积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(4)机器学习(4)

语言

全部英语(2)中文(简体)(2)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.043 秒,为您找到相关结果约 4 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    [{"class_name": "Dense", "config": {"name": "dense_13", "trainable": true, "batch_input_shape": [null, 8], "dtype": "float32", "units": 32, "activation": "linear", "use_bias": true, "kernel_initializer": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "conf ig": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": "bias_constraint": null}}, {" class_name": "Dense", "config": {"name": "dense_14", "trainable": true, "dtype": "float32", "units": 64, "activation": "relu", "use_bias": true, "kern el_initializer": {"class_name":
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12机器学习-关联规则

    Frequent Pattern Tree ) FP树(FP-Tree)是由数据库的初始项集组成的树状结构。 FP树的目的是挖掘最 频繁的模式。FP树的每个节点表示项集的一个项。 根节点表示null,而较低的节点表示项集。在形成树的同时,保持节点与较 低节点(即项集与其他项集)的关联。 30 3.FP-Growth算法 算法步骤 FP-growth算法的流程为: 首先构造FP树,然后利用它来挖掘频繁项集。 Frequent Pattern Tree ) FP树(FP-Tree)是由数据库的初始项集组成的树状结构。 FP树的目的是挖掘最 频繁的模式。FP树的每个节点表示项集的一个项。 根节点表示null,而较低的节点表示项集。在形成树的同时,保持节点与较 低节点(即项集与其他项集)的关联。 32 3.FP-Growth算法 算法案例 设置支持度阈值为50%,置信度阈值为60% 交易编号 考虑到根节点为空(null)。 Null ① 创建树的根。根由null表示。 34 3.FP-Growth算法 构建FP树 1.考虑到根节点为空(null)。 2. T1:I1、I2、I3的第一次扫描包含三个项目{I1:1}、 {I2:1}、{I3:1},其中I2作为子级链接到根,I1链接到I2 ,I3链接到I1。 (这里根据项集的数量排序成I2、I1、I3) Null l2:1
    0 码力 | 49 页 | 1.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    length to 500 words. If a sample is longer, it is truncated. A shorter sample is padded with null words. The null words have zero word vectors. We will further explain the process of transformation of a sentence
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    5(4), 115–133. [Merity et al., 2016] Merity, S., Xiong, C., Bradbury, J., & Socher, R. (2016). Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843. [Mikolov et al., 2013a] Mikolov, T.,
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
kerastutorial机器学习课程温州大学12关联规则EfficientDeepLearningBookEDLChapterTechniques动手深度v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩