积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(11)中文(简体)(2)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.068 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    complex relationships. Convolutional Neural Nets (CNNs) were another important breakthrough that enabled learning spatial features in the input. Recurrent Neural Nets (RNNs) facilitated learning from the sequences efficient layers and architectures. Let’s start our journey with learning about embeddings in the next section. Embeddings for Smaller and Faster Models We humans can intuitively grasp similarities between part of modern deep-learning models, and we are excited to explain how they work. In the following section we will explain them through a toy example, but feel free to jump ahead if you are familiar with
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    are and how to employ them in deep learning workflows. We start with data augmentation in the next section. Data Augmentation Data Augmentation is a set of dataset manipulation techniques to improve sample # Shift towards high tones transform_and_show(image_path, channel_shift_intensity=100) In this section, we discussed a number of spatial and value transformation techniques for image data. We used an the best weights for later use! That’s it for the label invariant image transformations! In this section, we presented various image transformation techniques that can be used to augment an image dataset
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 人工智能发展史

    ca/~vincentp/ift3395/lectures/backprop_old.pdf GAN:2014 https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf BigGAN https://arxiv.org/pdf/1809.11096.pdf Ian Goodfellow ▪ How I fail https://veronikach
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    软件,可以同时获得 Python 解释器、包管理和虚拟环境等一系列 便捷功能,何乐而不为呢。首先从 https://www.anaconda.com/distribution/#download-section 网址进入 Anaconda 下载页面,选择 Python 最新版本的下载链接即可下载,下载完成后安 装即可进入安装程序。如图 1.22 所示,勾选”Add Anaconda to my PATH 参考文献 [1] G. E. Hinton, S. Osindero 和 Y.-W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” Neural Comput., 卷 18, pp. 1527-1554, 7 2006. [2] Y. LeCun, B. Boser, J. S. Denker, D. Henderson Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville 和 Y. Bengio, “Generative Adversarial Nets,” 出处 Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    J., Mirza, M., Xu, B., Warde‐Farley, D., Ozair, S., ⋯ Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems (pp. 2672–2680). [Gotmare et al., 2018] Gotmare Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., & others (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. [Hochreiter & Schmidhuber, 1997] Hochreiter,
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    the model as a blackbox. The set which performs the best is chosen for full training. In the next section, we'll discuss various approaches for hyperparameter optimization. Hyperparameter Optimization promising ones. This is called Configuration Evaluation. Let's discuss it in detail in the next section. Figure 7-3: (a) Bayesian Optimization Search on a two dimensional search space. The red areas chapter 3, we trained a model to classify flowers in the oxford_flowers102 dataset. In the next section, we will retrain the same model but with a twist! Project: Oxford Flower Classification With Hyperparameter
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Details of quantization and its applications in deep learning follow right after. The quantization section delves into the implementation details using code samples. We finish with a hands-on project that of a layer or a collection of layers, such that it meets the desired tradeoff goals. In the next section we introduce Quantization, a popular compression technique which is also used in various fields of otherwise be too big to execute on such devices. We will tackle this exact problem in the following section. Figure 2-8: Image sizes with various degrees of quantization Quantization in Deep Learning Models
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    with a small number of labels. As we described in chapter 3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the costs of training human Gidaris et al.. Once the general model is ready, we can fine-tune it for a specific task. The next section discusses it in detail. Fine Tuning On Labeled Data The next step in using the pre-trained models top of the last hidden layer as demonstrated by Howard et al.. As we mentioned in the previous section, this idea of pre-training followed by fine-tuning is also used in BERT (Devlin et al.), and other
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    weights as well. Such techniques are classified under structured pruning techniques. In the next section, we will discuss pruning at different granularities. Sparsity Granularities The examples of sparsity demonstrate how we can create a pruned network without significant drop in accuracy in the next section. 4 Elsen, E., Dukhan, M., Gale, T., & Simonyan, K. (2019). Fast Sparse ConvNets. arXiv, 1911.09723 However, we could also use a variable sparsity value across epochs as explained in the earlier section. Active Research Some recent works like Sparse Evolutionary Training5 (SET), Dynamic Sparse Reparametrization6
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    the following: ‣ Ubuntu 16.04 including Python 3.6 environment ‣ NVIDIA CUDA 9.0.176 (see Errata section and 2.1) including CUDA ® Basic Linear Algebra Subroutines library ™ (cuBLAS) 9.0.425 ‣ NVIDIA the following: ‣ Ubuntu 16.04 including Python 3.6 environment ‣ NVIDIA CUDA 9.0.176 (see Errata section and 2.1) including CUDA ® Basic Linear Algebra Subroutines library ™ (cuBLAS) 9.0.425 ‣ NVIDIA environment ‣ NVIDIA CUDA 9.0.176 (see Errata section and 2.1) including CUDA ® Basic Linear Algebra Subroutines library ™ (cuBLAS) 9.0.333 (see section 2.3.1) ‣ NVIDIA CUDA ® Deep Neural Network library
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesTechniques人工智能人工智能发展发展史PyTorch深度学习动手深度学习v2AutomationCompressionAdvancedTechnicalReviewReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩