 keras tutorialinstall numpy you could see the following response, Collecting numpy Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ install pandas We could see the following response: Collecting pandas Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ matplotlib We could see the following response: Collecting matplotlib Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/0 码力 | 98 页 | 1.57 MB | 1 年前3 keras tutorialinstall numpy you could see the following response, Collecting numpy Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ install pandas We could see the following response: Collecting pandas Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ matplotlib We could see the following response: Collecting matplotlib Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/0 码力 | 98 页 | 1.57 MB | 1 年前3
 Experiment 1: Linear Regressionstart a very simple case where n = 1. Download data1.zip, and extract the files (ex1x.dat and ex1y.dat) from the zip file. The files contain some example measurements of heights for various boys between the complicated case where each training data contains mul- tiple features. Download data1.zip, and extract the files (ex2x.dat and ex2y.dat) from the zip file. This is a training set of housing prices in Portland, Oregon0 码力 | 7 页 | 428.11 KB | 1 年前3 Experiment 1: Linear Regressionstart a very simple case where n = 1. Download data1.zip, and extract the files (ex1x.dat and ex1y.dat) from the zip file. The files contain some example measurements of heights for various boys between the complicated case where each training data contains mul- tiple features. Download data1.zip, and extract the files (ex2x.dat and ex2y.dat) from the zip file. This is a training set of housing prices in Portland, Oregon0 码力 | 7 页 | 428.11 KB | 1 年前3
 AI大模型千问 qwen 中文文档./main -h 以了解它们。 1.4.3 生成你的 GGUF 文件 We introduce the method of creating and quantizing GGUF files in quantization/llama.cpp. You can refer to that document for more information. 1.4.4 PPL 评测 llama built-in tool␣ �→in Qwen-Agent bot = Assistant(llm=llm_cfg, system_message=system, function_list=tools, files=[os.path.abspath('doc.pdf')]) messages = [] while True: query = input('user question: ') messages knowledge base Q&A solution. 1.16.1 基础用法 The implementation process of this project includes loading files -> reading text -> segmenting text -> vectorizing text -> vectorizing questions -> matching the top0 码力 | 56 页 | 835.78 KB | 1 年前3 AI大模型千问 qwen 中文文档./main -h 以了解它们。 1.4.3 生成你的 GGUF 文件 We introduce the method of creating and quantizing GGUF files in quantization/llama.cpp. You can refer to that document for more information. 1.4.4 PPL 评测 llama built-in tool␣ �→in Qwen-Agent bot = Assistant(llm=llm_cfg, system_message=system, function_list=tools, files=[os.path.abspath('doc.pdf')]) messages = [] while True: query = input('user question: ') messages knowledge base Q&A solution. 1.16.1 基础用法 The implementation process of this project includes loading files -> reading text -> segmenting text -> vectorizing text -> vectorizing questions -> matching the top0 码力 | 56 页 | 835.78 KB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesregular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the usual models, the figure also shows compressed size comparisons for mentioned, the sizes reported in the above snippet are computed after running gzip on the generated model files. The original model’s size after gzip was 1442.9 KB. Applying clustering on the original model, followed0 码力 | 34 页 | 3.18 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesregular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the usual models, the figure also shows compressed size comparisons for mentioned, the sizes reported in the above snippet are computed after running gzip on the generated model files. The original model’s size after gzip was 1442.9 KB. Applying clustering on the original model, followed0 码力 | 34 页 | 3.18 MB | 1 年前3
 Experiment 2: Logistic Regression and Newton's Methodlogistic regression on a classification problem. 2 Data To begin, download data2.zip and extract the files from the zip file. For this exer- cise, suppose that a high school has a dataset representing 40 students0 码力 | 4 页 | 196.41 KB | 1 年前3 Experiment 2: Logistic Regression and Newton's Methodlogistic regression on a classification problem. 2 Data To begin, download data2.zip and extract the files from the zip file. For this exer- cise, suppose that a high school has a dataset representing 40 students0 码力 | 4 页 | 196.41 KB | 1 年前3
 TensorFlow on Yarn:深度学习遇上大数据⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files tfTestDemo.py,dataDeal.py \ #依赖的本地⽂件� --tfcmd “python tfTestDemo.py --training_epochs=20” \ #TF运⾏指令�0 码力 | 32 页 | 4.06 MB | 1 年前3 TensorFlow on Yarn:深度学习遇上大数据⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files tfTestDemo.py,dataDeal.py \ #依赖的本地⽂件� --tfcmd “python tfTestDemo.py --training_epochs=20” \ #TF运⾏指令�0 码力 | 32 页 | 4.06 MB | 1 年前3
 PyTorch TutorialInstall the Python extension. • ???????????? Install the Remote Development extension. • Python files can be run like Jupyter notebooks by delimiting cells/sections with #%% • Debugging PyTorch code0 码力 | 38 页 | 4.09 MB | 1 年前3 PyTorch TutorialInstall the Python extension. • ???????????? Install the Remote Development extension. • Python files can be run like Jupyter notebooks by delimiting cells/sections with #%% • Debugging PyTorch code0 码力 | 38 页 | 4.09 MB | 1 年前3
 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野Challenges – Scale of Financial Information Companies Market Types Speed To Market Problematic Files/Input Accuracy Modified from https://upload.wikimedia.org/wikipedia/commons/d/dc/UnderwoodKeybo0 码力 | 64 页 | 13.45 MB | 1 年前3 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野Challenges – Scale of Financial Information Companies Market Types Speed To Market Problematic Files/Input Accuracy Modified from https://upload.wikimedia.org/wikipedia/commons/d/dc/UnderwoodKeybo0 码力 | 64 页 | 13.45 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewas tfds with tf.device('/job:localhost'): ds = tfds.load('ag_news_subset', try_gcs=True, shuffle_files=True, batch_size=-1) train_dataset = tf.data.Dataset.from_tensor_slices(ds['train']) test_dataset0 码力 | 31 页 | 4.03 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewas tfds with tf.device('/job:localhost'): ds = tfds.load('ag_news_subset', try_gcs=True, shuffle_files=True, batch_size=-1) train_dataset = tf.data.Dataset.from_tensor_slices(ds['train']) test_dataset0 码力 | 31 页 | 4.03 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquespair of shoes or a couple of books to read. In the realm of the internet, videos, audios and data files are all compressed using a suitable format. It wasn’t a surprise that the idea of compression crept0 码力 | 33 页 | 1.96 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquespair of shoes or a couple of books to read. In the realm of the internet, videos, audios and data files are all compressed using a suitable format. It wasn’t a surprise that the idea of compression crept0 码力 | 33 页 | 1.96 MB | 1 年前3
共 12 条
- 1
- 2













