深度学习与PyTorch入门实战 - 43. nn.Modulenn.Module 主讲人:龙良曲 Magic ▪ Every Layer is nn.Module ▪ nn.Linear ▪ nn.BatchNorm2d ▪ nn.Conv2d ▪ nn.Module nested in nn.Module 1. embed current layers ▪ Linear ▪ ReLU ▪ Sigmoid ▪ Conv2d ▪ ConvTransposed2d0 码力 | 16 页 | 1.14 MB | 1 年前3
PyTorch Release NotesPython libraries such as NumPy, SciPy, and Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level. This functionality brings a high level of flexibility explained in Running A Container and specify the registry, repository, and tags. About this task On a system with GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker documentation. Note: Starting in Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was0 码力 | 365 页 | 2.94 MB | 1 年前3
AI大模型千问 qwen 中文文档�→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about0 码力 | 56 页 | 835.78 KB | 1 年前3
keras tutorial... 20 backend module ............................................................................................................................................ 21 utils module ................. and install it immediately on your system. Keras Installation Steps Keras installation is quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Matplotlib Scipy Seaborn Hopefully, you have installed all the above libraries on your system. If these libraries are not installed, then use the below command to install one by one. numpy0 码力 | 98 页 | 1.57 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionavailable in various form-factors ranging from a Raspberry-Pi like Dev Board to an independent solderable module. It has also been shipped directly on phones, such as Pixel 4. Figure 1-18: Approximate size of equivalent family of accelerators for edge devices. It comprises the Nano, which is a low-powered "system on a module" (SoM) designed for lightweight deployments, as well as the more powerful Xavier and TX variants rest for more compute intensive applications like industrial robotics. Figure 1-19: Jetson Nano module (Source) Hardware platforms like these are crucial because they enable our efficient models and0 码力 | 21 页 | 3.17 MB | 1 年前3
全连接神经网络实战. pytorch 版or mechanical, including photocopying and recording, or by any information storage or retrieval system, without the prior written permission of the publisher. Art. No 0 ISBN 000–00–0000–00–0 Edition 来训练网络 13 本章描述如何构建神经网络模型。 2.1 基本网络结构 我们定义神经网络的结构。在 pytorch 中要想使用神经网络,需要继承 nn.Module: c l a s s NeuralNetwork (nn . Module ) : def __init__( s e l f ) : super ( NeuralNetwork , s e l f ) . __init__ () 网络结构相对来说比较简单,由于并不是图像数据,所以设置的网络神经元数量大大减少: import torch . nn as nn c l a s s NeuralNetwork (nn . Module ) : def __init__( s e l f ) : super ( NeuralNetwork , s e l f ) . __init__ () # 把 数 组 降 到1 维0 码力 | 29 页 | 1.40 MB | 1 年前3
动手学深度学习 v2.0Jean Kaddour, austinmw, trebeljahr, tbaums, Cuong V. Nguyen, pavelkomarov, vzlamal, NotAnother‐ System, J‐Arun‐Mani, jancio, eldarkurtic, the‐great‐shazbot, doctorcolossus, gducharme, cclauss, Daniel‐ 查询条件的结果进行排序。如今,搜索引擎使用机器学习和用户行为模型来获取网页相关性得分,很多学术 会议也致力于这一主题。 推荐系统 另一类与搜索和排名相关的问题是推荐系统(recommender system),它的目标是向特定用户进行“个性化” 推荐。例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。类似的应用也会出现 在零售产品、音乐和新闻推荐等等。 在某些应用中,客户 有关如何使用给定函数或类的更具体说明,可以调用help函数。例如,我们来查看张量ones函数的用法。 help(torch.ones) Help on built-in function ones in module torch: ones(...) ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_0 码力 | 797 页 | 29.45 MB | 1 年前3
pytorch 入门笔记-03- 神经网络BY-SA 4.0) 前言 本节主要内容是如何使用 torch.nn 包来构建神经网络。 上一讲已经讲过了 autograd,nn 包依赖 autograd 包来定义模型并求导。 一个 nn.Module 包含各个层和一个 forward(input) 方法,该方法返回 output。 例如: 它是一个简单的前馈神经网络,它接受一个输入,然后一层接着一层地传递,最后输出计算的结果。 神经网络的典型训练过程如下: 定义网络 开始定义一个网络: import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self,): super(Net, self).__init__() # 输入图片通道数为 1,输出通道数为 6,卷积核大小为 Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn.Parameter:一种变量,当把它赋值给一个Module 时,被自动 地注册为一个参数。 ● autograd.Function:实现一个自动求导操作的前向和反向定义,每个变量操作至少创建一个函数0 码力 | 7 页 | 370.53 KB | 1 年前3
Machine Learning Pytorch TutorialNetwork Loss Function Optimization Algorithm Training Validation Testing Step 2. torch.nn.Module Load Data torch.nn – Network Layers ● Linear Layer (Fully-connected Layer) nn.Linear(in_features activation functions. torch.nn – Build your own neural network import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.net = nn.Sequential( output of your NN torch.nn – Build your own neural network import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.net = nn.Sequential(0 码力 | 48 页 | 584.86 KB | 1 年前3
机器学习课程-温州大学-03深度学习-PyTorch入门你已知道autograd包,nn包依赖autograd 包来定义模型并求导.一个nn.Module包含各个层和一个forward(input)方法,该 方法返回output。 典型的神经网络 28 神经网络关键组件及相互关系 3. 神经网络 29 PyTorch构建网络工具 torch.nn Module Linear Conv* *norm *Aative *Loss 3. 神经网络 torch.Tensor-支持自动编程操作(如backward())的多维数组。同时保持梯度的张 量。 nn.Module-神经网络模块.封装参数,移动到GPU上运行,导出,加载等 nn.Parameter-一种张量,当把它赋值给一个Module时,被自动的注册为参数。 autograd.Function-实现一个自动求导操作的前向和反向定义, 每个张量操作都会 创建至少0 码力 | 40 页 | 1.64 MB | 1 年前3
共 26 条
- 1
- 2
- 3













