积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)

语言

全部中文(简体)(15)英语(11)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.056 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 43. nn.Module

    nn.Module 主讲人:龙良曲 Magic ▪ Every Layer is nn.Module ▪ nn.Linear ▪ nn.BatchNorm2d ▪ nn.Conv2d ▪ nn.Module nested in nn.Module 1. embed current layers ▪ Linear ▪ ReLU ▪ Sigmoid ▪ Conv2d ▪ ConvTransposed2d
    0 码力 | 16 页 | 1.14 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Python libraries such as NumPy, SciPy, and Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level. This functionality brings a high level of flexibility explained in Running A Container and specify the registry, repository, and tags. About this task On a system with GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker documentation. Note: Starting in Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 keras tutorial

    ... 20 backend module ............................................................................................................................................ 21 utils module ................. and install it immediately on your system. Keras Installation Steps Keras installation is quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Matplotlib  Scipy  Seaborn Hopefully, you have installed all the above libraries on your system. If these libraries are not installed, then use the below command to install one by one. numpy
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    available in various form-factors ranging from a Raspberry-Pi like Dev Board to an independent solderable module. It has also been shipped directly on phones, such as Pixel 4. Figure 1-18: Approximate size of equivalent family of accelerators for edge devices. It comprises the Nano, which is a low-powered "system on a module" (SoM) designed for lightweight deployments, as well as the more powerful Xavier and TX variants rest for more compute intensive applications like industrial robotics. Figure 1-19: Jetson Nano module (Source) Hardware platforms like these are crucial because they enable our efficient models and
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    or mechanical, including photocopying and recording, or by any information storage or retrieval system, without the prior written permission of the publisher. Art. No 0 ISBN 000–00–0000–00–0 Edition 来训练网络 13 本章描述如何构建神经网络模型。 2.1 基本网络结构 我们定义神经网络的结构。在 pytorch 中要想使用神经网络,需要继承 nn.Module: c l a s s NeuralNetwork (nn . Module ) : def __init__( s e l f ) : super ( NeuralNetwork , s e l f ) . __init__ () 网络结构相对来说比较简单,由于并不是图像数据,所以设置的网络神经元数量大大减少: import torch . nn as nn c l a s s NeuralNetwork (nn . Module ) : def __init__( s e l f ) : super ( NeuralNetwork , s e l f ) . __init__ () # 把 数 组 降 到1 维
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Jean Kaddour, austinmw, trebeljahr, tbaums, Cuong V. Nguyen, pavelkomarov, vzlamal, NotAnother‐ System, J‐Arun‐Mani, jancio, eldarkurtic, the‐great‐shazbot, doctorcolossus, gducharme, cclauss, Daniel‐ 查询条件的结果进行排序。如今,搜索引擎使用机器学习和用户行为模型来获取网页相关性得分,很多学术 会议也致力于这一主题。 推荐系统 另一类与搜索和排名相关的问题是推荐系统(recommender system),它的目标是向特定用户进行“个性化” 推荐。例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。类似的应用也会出现 在零售产品、音乐和新闻推荐等等。 在某些应用中,客户 有关如何使用给定函数或类的更具体说明,可以调用help函数。例如,我们来查看张量ones函数的用法。 help(torch.ones) Help on built-in function ones in module torch: ones(...) ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    BY-SA 4.0) 前言 本节主要内容是如何使用 torch.nn 包来构建神经网络。 上一讲已经讲过了 autograd,nn 包依赖 autograd 包来定义模型并求导。 一个 nn.Module 包含各个层和一个 forward(input) 方法,该方法返回 output。 例如: 它是一个简单的前馈神经网络,它接受一个输入,然后一层接着一层地传递,最后输出计算的结果。 神经网络的典型训练过程如下: 定义网络 开始定义一个网络: import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self,): super(Net, self).__init__() # 输入图片通道数为 1,输出通道数为 6,卷积核大小为 Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn.Parameter:一种变量,当把它赋值给一个Module 时,被自动 地注册为一个参数。 ● autograd.Function:实现一个自动求导操作的前向和反向定义,每个变量操作至少创建一个函数
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Network Loss Function Optimization Algorithm Training Validation Testing Step 2. torch.nn.Module Load Data torch.nn – Network Layers ● Linear Layer (Fully-connected Layer) nn.Linear(in_features activation functions. torch.nn – Build your own neural network import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.net = nn.Sequential( output of your NN torch.nn – Build your own neural network import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.net = nn.Sequential(
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    你已知道autograd包,nn包依赖autograd 包来定义模型并求导.一个nn.Module包含各个层和一个forward(input)方法,该 方法返回output。 典型的神经网络 28  神经网络关键组件及相互关系 3. 神经网络 29  PyTorch构建网络工具 torch.nn Module Linear Conv* *norm *Aative *Loss 3. 神经网络 torch.Tensor-支持自动编程操作(如backward())的多维数组。同时保持梯度的张 量。 nn.Module-神经网络模块.封装参数,移动到GPU上运行,导出,加载等 nn.Parameter-一种张量,当把它赋值给一个Module时,被自动的注册为参数。 autograd.Function-实现一个自动求导操作的前向和反向定义, 每个张量操作都会 创建至少
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
深度学习PyTorch入门实战43nnModuleReleaseNotesAI模型千问qwen中文文档kerastutorialEfficientDeepLearningBookEDLChapterIntroduction连接神经网络神经网神经网络pytorch动手v2笔记03MachinePytorchTutorial机器课程温州大学
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩