积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(58)机器学习(58)

语言

全部中文(简体)(39)英语(19)

格式

全部PDF文档 PDF(58)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 58 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    Chapter 7 - Automation "There's a lot of automation that can happen that isn't a replacement of humans but of mind-numbing behavior." - Stewart Butterfield, Founder (Slack) We have talked about a variety tensorflow.keras import layers, optimizers train_ds, val_ds, test_ds = tfds.load( 'oxford_flowers102', split=['train', 'validation', 'test'], as_supervised=True, read_config=tfds.ReadConfig(try_autocache=False) return image, label train_ds = train_ds.map(resize_image) val_ds = val_ds.map(resize_image) test_ds = test_ds.map(resize_image) Note that the create_model() function here has two additional parameters:
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Train-Val-Test-交叉验证

    Train-Val-Test划分 主讲人:龙良曲 Recap How to detect Splitting Train Set Test Set For example 60K 10K test while train train test trade-off Overfitt ing For others judge ▪ Kaggle Train Set Test Set Set Val Set Unavailable train-val-test K-fold cross-validation Train Set Test Set Val Set k-fold cross validation ▪ merge train/val sets ▪ randomly sample 1/k as val set 下一课时 减轻Overfitting Thank
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & layers, infrastructure). Our hope is that even if you just read this chapter case). For example, if you are deploying a model on devices where inference is constrained (such as mobile and embedded devices), or expensive (cloud servers), it might be worth paying attention to inference liable for data breaches. The law went into effect in 2018. Figure 1-5: Growth in the number of mobile and IoT devices over time. The lighter blue bars represent forecasts. (Data Source: 1, 2) In this
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    goals. High quality models have an additional benefit in footprint constrained environments like mobile and edge devices where they provide the flexibility to trade off some quality for smaller footprints others’. Let’s understand it with an example. Assume that we are working on a model for a home-automation device. Figure 3-4 shows the high level workflow of such a device. The model continuously classifies indicates the absence of an acceptable keyword in the input signal. Figure 3-4: Workflow of a home-automation device which detects three spoken words: hello weather and time. The output is none when none
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    even whole channels. Libraries like XNNPACK3,4 can help accelerate networks on a variety of web, mobile, and embedded devices, provided the user can design networks that match their constraints. One might val_loss: 0.5619 - val_accuracy: 0.8460 # Evaluate the pruned model on the test set. model_for_pruning_acc = model_for_pruning.evaluate(test_prep_ds.batch(256))[1] print('Accuracy: ', model_for_pruning_acc) Accuracy: 0.8471 Recall that the regular model performed with a 85.11% accuracy on the test set. Our pruned model performed with an accuracy of 84.71%. It's a slight drop in performance. Let's go ahead
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    5项主要比赛中 的3项世界冠军 软银孙正义收购Google旗下的 机器人公司Boston Dynamics 和Schaft 通用 10亿美元 收购无人驾驶技 术初创公司Cruise Automation 首次中国公司在ImageNet竞赛 夺冠,视频分析技术登顶 人脸识别大幅提高精度,商汤科 技首次突破人类肉眼识别准确率 ,领先于Facebook Google5000万美元招入 为什么用Go - 比起C++,更易于实践各种并发模式 - 比起Java,更加简洁,更易于与C/C++交互 - 比起脚本语言,类型和内存安全,保证重构效率与产品质量 - 完善的配套工具,如go test, gofmt, go lint, race-detector Go语言在高性能系统中的实践经验 • Go在开发高性能应用上也有一些不足, 对比C++: - 无法直接控制操作系统线程,CUDA
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    L.P. All rights reserved. Qcon Beijing April 21, 2018 Biye Li Team Manager, Data Technologies Automation Xiangqian Yu Team Lead, Derivatives Data From Keyboards to Neural Networks 从键盘到神经网络 © 2018 Bloomberg decision- making. 4 © 2018 Bloomberg Finance L.P. All rights reserved. What is Data Technologies Automation? Challenges – Scale of Financial Information Companies Market Types Speed To Market Problematic reserved. Final Notes Deep Learning can achieve superhuman accuracy for the right problems Automation is the only way to keep up with the exponential growth of data © 2018 Bloomberg Finance L.P.
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    them to transform large and complex models into smaller and efficient models capable of running on mobile and edge devices. We have also set up a couple of programming projects for a hands-on model optimization the structure is as follows. dbpedia_csv/ dbpedia_csv/train.csv dbpedia_csv/readme.txt dbpedia_csv/test.csv dbpedia_csv/classes.txt Let's explore the dataset! First, let's see what classes we have. import " Let's find the number of train and test examples. !wc -l dbpedia_csv/train.csv !wc -l dbpedia_csv/test.csv 560000 dbpedia_csv/train.csv 70000 dbpedia_csv/test.csv It all looks good! Now, it’s time
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Such a model is useful if we want to deploy a model in a space constrained environment like a mobile device. To summarize, compression techniques help to achieve an efficient representation of a layer the storage space or the transmission bandwidth is expensive like deep learning models on mobile devices. Mobile devices are resource constrained. Hence, quantization can help to deploy models which would can be deployed in resource constrained environments like the mobile devices. Quantization has enabled a whole lot of models to run on mobile devices and IoTs which otherwise wouldn’t be possible. We have
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    D轮融资 估值70亿美元 7 旷视科技 计算机视觉技术等 安防 中国 2011年 D轮融资 估值40亿美元 8 科大讯飞 智能语音技术 综合 中国 1999年 上市 市值108亿美元 9 Automation Anywhere 自然语言处理技术、非结构化数据认知 企业管理 美国 2003年 B轮融资 估值68亿美元 10 IBM Watson(IBM沃森) 深度学习、智适应学习技术 计算机 美国
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
共 58 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomation深度学习PyTorch入门实战32TrainValTest交叉验证IntroductionTechniquesAdvancedCompressionQCon北京2018未来都市智慧城市基于机器视觉陈宇恒键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野Architectures课程温州大学01引言
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩