积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(45)机器学习(45)

语言

全部中文(简体)(31)英语(14)

格式

全部PDF文档 PDF(45)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 45 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    would have needed if we were training a task specific model from scratch. One such task is the Microsoft Research Paraphrase Corpus1 where the model needs to predict if a pair of sentences are semantically software9 where GPT-3 is used for auto-completing code snippets with an IDE. End-users can also use GPT-3 API10 to build their own applications. Given the large number of possible uses for such models, the high Anthology, Nov. 2021, pp. 10644-52, doi:10.18653/v1/2021.emnlp-main.831. 10 OpenAI GPT-3 API https://openai.com/api/ 9 GitHub Copilot: https://github.com/features/copilot import tensorflow_datasets as
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ..................................................... 55 Keras v Functional API .................................................................................................. and the primary benefit is distributed computing. CNTK is deep learning framework developed by Microsoft. It uses libraries such as Python, C#, C++ or standalone machine learning toolkits. Theano and techniques to make high level neural network API easier and more performant. It supports the following features:  Consistent, simple and extensible API.  Minimal structure - easy to achieve the
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    PyTorch Computation Graph Advantages (continued) • Which one do you think is better? Advantages (continued) • Which one do you think is better? PyTorch! • Easy Interface − easy to use API. The code execution • Visualization Tools like • TensorboardX (monitor training) • PyTorchViz (visualise computation graph) • Various other functions • loss (MSE,CE etc..) • optimizers Prepare Input Data •Load data •Iterate to run on. Visualization • TensorboardX (visualise training) • PyTorchViz (visualise computation graph) https://github.com/lanpa/tensorboardX/ Visualization (continued) • PyTorchViz https://github
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    3 提交主要更改 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 16.6 d2l API 文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 16.6 些情况下,我们通常会提供两个版本的示例:一个是我们从零开始实现一切,仅依赖张量操作和自动微分; 另一个是更实际的示例,我们使用深度学习框架的高级API编写简洁的代码。一旦我们教了您一些组件是如 何工作的,我们就可以在随后的教程中使用高级API了。 内容和结构 全书大致可分为三个部分,在 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 的流行 工具,而MNIST数据集的60000个手写数字的数据集被认为是巨大的。考虑到数据和计算的稀缺性,核方法 (kernel method)、决策树(decision tree)和图模型(graph models)等强大的统计工具(在经验上)证明 是更为优越的。与神经网络不同的是,这些算法不需要数周的训练,而且有很强的理论依据,可以提供可预 测的结果。 1.5 深度学习的发展 大约2
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    分布式存储  分布式查询 功能完备:  GSL/负采样  主流图算法  异构图 (user/item/attribute)  动态图 标准化: Standard Libraries Graph-Learn: 分布式图算法库 标准化: Standard Solutions Continuous Optimization: Active learning Data Label Model 证件扫描 活体检测 人脸比对 • 卡证OCR • 人脸检测 • 活体检测 •人脸比对 Mobile SDK API + customer 示例: e-Know Your Customer eKYC eKYC Server eKYC SDK/API  多语言、国际化  多种证件版式  准确率领先同类产品  集成方便 标准化: Standard Solutions [VariationalDropout] 通信优化 [GRPC++] 实时训练 [增量更新] 混合精度 [bf16] 工程优化: 千亿特征优化 模型蒸馏 AVX/SSE优化 Graph优化 [User Graph去重] 内存Allocate优化 ParallelStringOp [split/type conversion] Sequence Feature [side info]
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    multi-gpu, and multi-node support. Functions are executed immediately instead of enqueued in a static graph, improving ease of use and provides a sophisticated debugging experience. In the container, see /workspace/README highly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ A preview of Torch-TensorRT (1.4.0dev0) is now highly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. PyTorch Release 23.06 PyTorch RN-08516-001_v23
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    production. BERT is used in Google Search to improve relevance of results, and GPT-3 is available as an API for interested users to consume. Having demonstrated the rapid growth of deep learning models, let Figure 1-9: Illustration of the pruning process. On the left is the unpruned graph, and on the right is a pruned graph with the unimportant connections and neurons removed. Learning Techniques Learning
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    Auto Evaluation Log Server Graph Abstraction Data Flow API Manager Pipeline AVA 弹性深度学习平 台 L1 L2 L3 L4 L5 原子API 基础模型 感知层1 API 感知层2 API Vision 综合API 业务逻辑API Argus机器视觉系统 可自定义开发 Argus现有系统提供
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    quality image. b=2 b=4 b=5 b=6 b=7 b=8 Figure 2-7: Images with various degrees of quantization. A graph of quantized representation bit size (b) and the resulting image sizes (in bits) is shown in figure model. Now, let’s get it ready for training. The get_compiled_model() function creates our model graph using the create_model() function. Then, it compiles the model by providing the necessary components Unoptimized Model We are all set to start training our model. Tensorflow provides a user-friendly API to train the model. All we need is to invoke the fit() method on the model object. It takes in the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 45 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewkerastutorialPyTorchTutorial动手深度学习v2阿里云上建模实践程孟力Keras基于PythonReleaseNotesIntroduction构建媒体数据弹性计算平台Compression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩