动手学深度学习 v2.0以其他格式存储的数据也可以通过类似的方式进行处理。下面我们将数据集按行写入CSV文件中。 import os os.makedirs(os.path.join('..', 'data'), exist_ok=True) data_file = os.path.join('..', 'data', 'house_tiny.csv') with open(data_file, 'w') as f: f.write('NumRooms edu/ml/machine‐learning‐databases/housing/housing.names 180 4. 多层感知机 def download(name, cache_dir=os.path.join('..', 'data')): #@save """下载一个DATA_HUB中的文件,返回本地文件名""" assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}" {DATA_HUB}" url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) fname = os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname0 码力 | 797 页 | 29.45 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesph)) # Sentence shuffle shuffle(sentences) # Paragraph recomposition shuffled_paragraph = ' '.join(sentences) Enough theory! Let’s apply this knowledge to a sentiment classification problem. We will best_checkpoint_callback(model_name): checkpoint_dir_path = os.path.join(CHECKPOINTS_DIR, model_name) checkpoint_path = os.path.join(checkpoint_dir_path, model_name) return tf.keras.callbacks.ModelCheckpoint( load_best_checkpoint(model, model_name): checkpoint_dir_path = os.path.join(CHECKPOINTS_DIR, model_name) checkpoint_path = os.path.join(checkpoint_dir_path, model_name) model.load_weights(checkpoint_path)0 码力 | 56 页 | 18.93 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112len(test_data)) 预览版202112 第 11 章 循环神经网络 16 # 随机选择一个样本,打印其文本和标签 print('sample:', ' '.join(train_data.examples[3].text)) print('label:', train_data.examples[3].label) print('words:', len(train_data moving_average_rewards.append(reward) else: # 结束标志 break [w.join() for w in workers] # 等待线程退出 14.6 小结 本章介绍了强化学习的问题设定和基础理论,并引出解决强化学习问题的两个系列算 法:策略梯度方法和值函数方法 遍历根目录下的子文件夹,并排序,保证映射关系固定 for name in sorted(os.listdir(os.path.join(root))): # 跳过非文件夹对象 if not os.path.isdir(os.path.join(root, name)): continue # 给每个类别编码一个数字0 码力 | 439 页 | 29.91 MB | 1 年前3
Keras: 基于 Python 的深度学习库7.1 Embedding [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.8 融合层 Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.8.1 Add [source] Theoretically Grounded Application of Dropout in Recurrent Neural Networks 关于 KERAS 网络层 104 5.8 融合层 Merge 5.8.1 Add [source] keras.layers.Add() 计算一个列表的输入张量的和。 相加层接受一个列表的张量,所有的张量必须有相同的输入尺寸,然后返回一个张量(和 Bidirectional [source] keras.layers.Bidirectional(layer, merge_mode='concat', weights=None) RNN 的双向封装器,对序列进行前向和后向计算。 参数 • layer: Recurrent 实例。 • merge_mode: 前向和后向 RNN 的输出的结合模式。为 {’sum’, ’mul’, ’concat’,0 码力 | 257 页 | 1.19 MB | 1 年前3
Lecture 7: K-MeansClustering 1 Start with each example in its own singleton cluster 2 At each time-step, greedily merge 2 most similar clusters 3 Stop when there is a single cluster of all examples, else go to 2 Feng is usually more efficient run-time wise Hierarchical clustering can be slow (has to make several merge/split decisions) No clear consensus on which of the two produces better clustering Feng Li (SDU)0 码力 | 46 页 | 9.78 MB | 1 年前3
keras tutorial........................................................................................... 47 Merge Layer ........................................................................................... refers the input dimension. input_length refers the length of input sequence. Merge Layer It is used to merge a list of inputs. It supports add(), subtract(), multiply(), average(), maximum(),0 码力 | 98 页 | 1.57 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesdataset! First, let's see what classes we have. import os import pprint class_names = open(os.path.join('dbpedia_csv', 'classes.txt')).read().splitlines() num_classes = len(class_names) # The classes are the previous step. Let's look up the indices in the vocabulary to make sure that it works well. ' '.join(np.take(vocabulary, edl_sequence_output)) '[UNK] deep learning [UNK]' Notice that the random token0 码力 | 53 页 | 3.92 MB | 1 年前3
AI大模型千问 qwen 中文文档write_check_file(filepath, docs): folder_path = os.path.join(os.path.dirname(filepath), "tmp_files") if not os.path.exists(folder_path): os.makedirs(folder_path) fp = os.path.join(folder_path, 'load_file.txt') with open(fp0 码力 | 56 页 | 835.78 KB | 1 年前3
《TensorFlow 快速入门与实战》3-TensorFlow基础概念解析d ���� random_normal/random_shuffle/multinomial/random_gamma ����� string_to_hash_bucket/reduce_join/substr/encode_base64 ������ encode_png/resize_images/rot90/hsv_to_rgb/adjust_gamma TensorFlow �����0 码力 | 50 页 | 25.17 MB | 1 年前3
超大规模深度学习在美团的应用-余建平据量 • Online Learning对数据流的要求 不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息 数据有序性:数据乱序会导致样本穿越的现象 • Log Join框架 双流拼接框架,通过组合方式支持多流拼接 基于Event Time的Window机制拼接方式 基于Low Watermark解决流乱序、流延迟等流式常 见问题 流式拼接框架0 码力 | 41 页 | 5.96 MB | 1 年前3
共 17 条
- 1
- 2













