PyTorch Release Notesmulti-threaded data loaders, the default shared memory segment size with which the container runs might not be enough. Therefore, you should increase the shared memory size by issuing one of the following commands: commands: ‣ --ipc=host ‣ --shm-size=memory size> in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container for use by PyTorch or (FP8) precision on Hopper GPUs which provides better training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular 0 码力 | 365 页 | 2.94 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesThe first paragraph is the original version. The shuffled version follows it. Barring the confused usage of “This” in the shuffled sentence, both the original and the shuffled sentences convey identical exist_ok=True) Let’s create our model. It is short and simple. It has two bidirectional LSTM (Long Short-Term Memory Layer) layers and two dense layers interleaved with dropouts. The LSTM layers help to learn the probabilities improvements with synthetic data on various classification tasks for various classification models. The usage of synthetic data generation is not just limited to the textual domain. Let’s direct this discussion0 码力 | 56 页 | 18.93 MB | 1 年前3
AI大模型千问 qwen 中文文档quantize_config) 但是,如果你想使用多 GPU 来读取模型,你需要使用 max_memory 而不是 device_map。下面是一段示例 代码: model = AutoGPTQForCausalLM.from_pretrained( model_path, quantize_config, max_memory={i:"20GB" for i in range(4)} ) 接下来,你需要准 osition_embedding)为 32768,因此服务时的最 大长度也是这个值,这会导致更高的内存需求。将此值适当减小通常有助于解决 OOM 问题。另一个您可以 关注的参数是 --gpu-memory-utilization 。默认情况下,该值为 0.9 ,您可以将其调高以应对 OOM 问题。这也是为什么您发现一个大型语言模型服务总是占用大量内存的原因。 1.11 SkyPilot 1.11 logging.warning("FSDP or ZeRO3 is incompatible with QLoRA.") model_load_kwargs = { "low_cpu_mem_usage": not deepspeed.is_deepspeed_zero3_enabled(), } (续下页) 32 Chapter 1. 文档 Qwen (接上页) compute_dtype0 码力 | 56 页 | 835.78 KB | 1 年前3
PyTorch Tutorialneed a fewer lines to code in comparison. • It is easy to debug and understand the code. • Python usage − This library is considered to be Pythonic which smoothly integrates with the Python data science __init__(self) • __get_item__(self, index) • __len__(self) • Unless the dataset is huge (cannot fit in memory), you don’t explictly need to define this class. Use TensorDataset Dataloader • Dataloader • What0 码力 | 38 页 | 4.09 MB | 1 年前3
keras tutorial scale - standard deviation of uniform distribution. Let us have a look at the below example usage: >>> a = k.random_uniform_variable(shape=(2, 3), low=0, high=1) >>> b = k. random_uniform_variable(shape=(3 reasonable range. Keras 83 In this chapter, let us write a simple Long Short Term Memory (LSTM) based RNN to do sequence analysis. A sequence is a set of values where each value corresponds0 码力 | 98 页 | 1.57 MB | 1 年前3
动手学深度学习 v2.0是训练比单纯的预测需要更多的内存(显存)的原因之 一。此外,这些中间值的大小与网络层的数量和批量的大小大致成正比。因此,使用更大的批量来训练更深 层次的网络更容易导致内存不足(out of memory)错误。 小结 • 前向传播在神经网络定义的计算图中按顺序计算和存储中间变量,它的顺序是从输入层到输出层。 • 反向传播按相反的顺序(从输出层到输入层)计算和存储神经网络的中间变量和参数的梯度。 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+============== -------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| +---0 码力 | 797 页 | 29.45 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesbear, if we ever accidentally cross paths. We build an associative memory when about them over our lifetime. This associative memory helps us visualize the similarities or differences between a pair of model architecture of the downstream task. In essence, the embedding tables provide us a portable memory bank of knowledge about our domain of interest. This knowledge can be freely used by downstream tasks significant portion of the model size on disk and in memory. Although this comes with the cost of the table taking up significant disk space and memory, this issue can be a bottleneck if the model is going0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 1 - IntroductionTraining Efficiency involves benchmarking the model training process in terms of computation cost, memory cost, amount of training data, and the training latency. It addresses questions like: ● How long the model take to train? ● How many devices are needed for the training? ● Can the model fit in memory? ● How much data would the model need to achieve the desired performance on the given task that embedding (known as the dimensionality). However, this also leads to a direct increase in model size and memory consumption. Figure 1-16: A regular embedding table on the left with an embedding for each token0 码力 | 21 页 | 3.17 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112除了具有空间结构的图片、视频等数据外,序列信号也是非常常见的一种数据类型, 其中一个最具代表性的序列信号就是文本数据。如何处理并理解文本数据是自然语言处理 的一个核心问题。卷积神经网络由于缺乏 Memory 机制和处理不定长序列信号的能力,并 不擅长序列信号的任务。循环神经网络(Recurrent Neural Network,简称 RNN)在 Yoshua Bengio、Jürgen Schmidhuber cuda.memory_allocated 函 数获取目前已分配显存大小,代码如下: # 获取 GPU 0 的总显存 t = torch.cuda.get_device_properties(0).total_memory # 获取保留显存 r = torch.cuda.memory_reserved(0) # 获取已分配显存 a = torch.cuda.memory_allocated(0) 有效的全局语义信息。 11.2.3 全局语义 如何赋予网络提取整体语义特征的能力呢?或者说,如何让网络能够按序提取词向量 的语义信息,并累积成整个句子的全局语义信息呢?我们想到了内存(Memory)机制。如果 网络能够提供一个单独的内存变量,每次提取词向量的特征并刷新内存变量,直至最后一 个输入完成,此时的内存变量即存储了所有序列的语义特征,并且由于输入序列之间的先 后顺序,使得内存变量内容与序列顺序紧密关联。0 码力 | 439 页 | 29.91 MB | 1 年前3
深度学习与PyTorch入门实战 - 09. 维度变换example 8 squeeze 9 Expand / repeat ▪ Expand: broadcasting ▪ Repeat: memory copied 10 Expand/expand_as 11 repeat Memory touched 12 .t 13 Transpose 14 permute 15 Thank You.0 码力 | 16 页 | 1.66 MB | 1 年前3
共 28 条
- 1
- 2
- 3













