积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部英语(4)中文(简体)(3)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.055 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    = torch.eye(10).reshape((1, 1, 10, 10)) show_heatmaps(attention_weights, xlabel='Keys', ylabel='Queries') 后面的章节内容将经常调用show_heatmaps函数来显示注意力权重。 小结 • 人类的注意力是有限的、有价值和稀缺的资源。 • 受试者使用非自主性和自主性提示有选择性地引导注意力。前者基于突出性,后者则依赖于意识。 Parameter(torch.rand((1,), requires_grad=True)) def forward(self, queries, keys, values): # queries和attention_weights的形状为(查询个数,“键-值”对个数) queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1])) shape[1])) self.attention_weights = nn.functional.softmax( -((queries - keys) * self.w)**2 / 2, dim=1) # values的形状为(查询个数,“键-值”对个数) return torch.bmm(self.attention_weights.unsqueeze(1), values.unsqueeze(-1))
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    hms#/media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File: els_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    best serve these needs. When applying color in the digital environment; web, app, and social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK best serve these needs. When applying color in the digital environment; web, app, and social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    interacting 4 Semi-supervised learning: partially supervised learning 5 Active learning: actively making queries Feng Li (SDU) Overview September 6, 2023 22 / 57 Supervised Learning In the ML literature, a supervised
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 人工智能发展史

    umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf ▪ 2015 https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf AlphaZero http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    02/24/2017 Hotel Booking 与 AWS Mobile Hub 集成 Authenticate users Analyze user behavior Store and share media Synchronize data More …. Track retention Conversational Bots Lex AWS Mobile SDKs AWS Mobile Hub
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    without a significant quality compromise. Project: Snapchat-Like Filters for Pets Popular social media applications like Instagram or Snapchat have filters which can be applied over photos. For example
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
动手深度学习v2QCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野PyTorchBrandGuidelinesLectureOverview人工智能人工智能发展发展史亚马亚马逊AWSAIServicesEfficientDeepLearningBookEDLChapterArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩