积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(33)机器学习(33)

语言

全部英语(21)中文(简体)(12)

格式

全部PDF文档 PDF(33)
 
本次搜索耗时 0.039 秒,为您找到相关结果约 33 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    about PyTorch, including tutorials, documentation, and examples, see: ‣ PyTorch website ‣ PyTorch project This document provides information about the key features, software enhancements and improvements corresponds, see CUDA GPUs. For additional support details, see Deep Learning Frameworks Support Matrix. Key Features and Enhancements This PyTorch release includes the following key features and enhancements the NVIDIA containers for PyTorch. For earlier container versions, refer to the Frameworks Support Matrix. Container Version Ubuntu CUDA Toolkit PyTorch TensorRT 23.07 2.1.0a0+b5021ba 23.06 2.1.0a0+4136153
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    sparsify_smallest() and compress(). The sparsify_smallest() sets the absolute smallest weights in the input weight matrix to zero. The number of the absolute smallest weights is computed based on the sparsity_rate parameter Compress the weights matrix using gzip. compressed_w = gzip.compress(w.tobytes()) return compressed_w To demonstrate the effect of sparsity on compression, we create a sample 2D weight matrix with randomly compute the original weight matrix size, compressed weight matrix size, and compressed and sparsified weight matrix size. As shown in the output below, the sparsified compressed matrix is smaller than the regular
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    (at least in the pre deep learning era). Techniques like Principal Components Analysis, Low-Rank Matrix Factorization, etc. are popular tools for dimensionality reduction. We will explain these techniques your embeddings similar to Word2Vec, GloVe, and other embedding methods. How about we jump into a project now to demonstrate how embeddings can be used to achieve a high performing model while optimizing the recent literature. Using pre-trained embeddings to improve accuracy of a NLP task. In this project we will work with the DBPedia dataset, which has snippets of text from Wikipedia. Our goal is to
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    quantization section delves into the implementation details using code samples. We finish with a hands-on project that will walk you through the process of applying quantization in practical situations using popular function with an input and parameters such that . In the case of a fully-connected layer, is a 2-D matrix. Further, assume that we can train another network with far fewer parameters ( ) such that the labs/raw/main/pia23378-16.jpeg Solution: First, we will interpret the image in the form of a 2D matrix having values in [0.0, 1.0]. %matplotlib inline import matplotlib.pyplot as plt import matplotlib
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 keras tutorial

    environment while developing Python applications. Linux/Mac OS Linux or mac OS users, go to your project root directory and type the below command to create virtual environment, python3 -m venv kerasenv Keras 7 Quit virtual environment After finishing all your changes in your project, then simply run the below command to quit the environment: deactivate Anaconda Cloud We believe the utils module is as follows: HDF5Matrix It is used to represent the input data in HDF5 format. from keras.utils import HDF5Matrix data = HDF5Matrix('data.hdf5', 'data') to_categorical
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    s.t. gi(ω) ≤ 0, i = 1, · · · , k Aω − b = 0 f and gi (i = 1, · · · , k) are convex A is a l × n matrix, b ∈ Rl Feng Li (SDU) SVM December 28, 2021 26 / 82 Weak Duality V.s. Strong Duality Weak duality: Feng Li (SDU) SVM December 28, 2021 50 / 82 The Kernel Matrix For K to be a kernel function The kernel function K also defines the Kernel Matrix over the data (also denoted by K) Given m samples {x(1) example in the feature space F K: m × m matrix of pairwise similarities between samples in F space K is a symmetric matrix K is a positive semi-definite matrix Feng Li (SDU) SVM December 28, 2021 51
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Mean vector µ ∈ Rn Covariance matrix Σ ∈ Rn×n Mahalanobis distance: r 2 = (x − µ)TΣ−1(x − µ) Σ is symmetric and positive semidefinite Σ = ΦΛΦT Φ is an orthonormal matrix, whose columns are eigenvectors eigenvectors of Σ Λ is a diagonal matrix with the diagonal elements being the eigenvalues Feng Li (SDU) GDA, NB and EM September 27, 2023 39 / 122 Multivariate Gaussian Distribution: A 2D Example From left to t. gi(x) = 0, i = 1, 2, · · · , m such that Rank(Dg(x∗)) = m < n where Rank(Dg(x∗)) denotes the matrix of partial derivatives � ∂gj ∂xi � . There exist unique Lagrange multipliers λ ∈ Rm such that
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    accelerate and smoothen the convergence Feng Li (SDU) Linear Regression September 13, 2023 23 / 31 Matrix Derivatives 1 A function f : Rm×n → R The derivative of f with respect to A is defined as ▽f (A) (A) = � �� ∂f ∂A11 · · · ∂f ∂An ... ... ... ∂f ∂Am1 · · · ∂f ∂Amn � �� For an n × n matrix, its trace is defined as trA = �n i=1 Aii trABCD = trDABC = trCDAB = trBCDA trA = trAT, tr(A + B) = trace derivative ▽AT trABATC = BTATC T + BATC 1Details can be found in “Properties of the Trace and Matrix Derivatives” by John Duchi Feng Li (SDU) Linear Regression September 13, 2023 24 / 31 Revisiting
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    of the data Examples: Discovering clusters Discovering latent factor Discovering graph structure Matrix completion Feng Li (SDU) Overview September 6, 2023 28 / 57 Unsupervised Learning: Discovering Learning: Matrix Completion Sometimes we have missing data, that is, variables whose values are unknown, such that the corresponding design matrix will then have “holes” in it The goal of matrix completion
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    CustomObjectScope [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 20.2 HDF5Matrix [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 20.3 Sequence visualization • Deep dream 3.3.18 如何在 Keras 中使用 HDF5 输入? 你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix 文档。 你也可以直接使用 HDF5 数据集: import h5py with h5py.File('input/file.hdf5', 'r') as f: x_data 矩阵的初始化方法 (详见 initializers)。 • embeddings_regularizer: embeddings matrix 的正则化方法 (详见 regularizer)。 • embeddings_constraint: embeddings matrix 的约束函数 (详见 constraints)。 • mask_zero: 是否把 0 看作为一个应该被遮蔽的特殊的”padding”
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 33 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesArchitectureskerastutorialLectureSupportVectorMachineGaussianDiscriminantAnalysisNaiveBayesLinearRegressionOverviewKeras基于Python深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩