keras tutorialRecurrent neural networks(RNN). It is defined as shown below: Keras 49 keras.engine.base_layer.wrapped_fn() It supports the following parameters: cell refers an instance. classification MNIST database of handwritten digits Fashion-MNIST database of fashion articles Boston housing price regression dataset Let us use the MNIST database of handwritten digits (or Weights. Model weights are large file so we have to download and extract the feature from ImageNet database. Some of the popular pre-trained models are listed below, ResNet VGG16 MobileNet0 码力 | 98 页 | 1.57 MB | 1 年前3
PyTorch Release Noteswith GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker engine loads the image into a container which runs the software. ‣ You define the runtime resources of Deep Learning Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating which provides better training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular Transformer architectures and0 码力 | 365 页 | 2.94 MB | 1 年前3
QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野wikimedia.org/wiki/File:Nvidia_logo.svg and https://commons.wikimedia.org/wiki/File:Docker_(container_engine)_l ogo.png May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons org/wikipedia/commons/6/67/Kubernetes_logo.svg and https://commons.wikimedia.org/wiki/File:Docker_(contai ner_engine) _logo.png May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons0 码力 | 64 页 | 13.45 MB | 1 年前3
超大规模深度学习在美团的应用-余建平提供系统的平台化工具,为用户提供易用的界面操作; MLX模型能力 MLX平台架构 MLX平台架构 • 基于Worker + PS架构搭建 • Worker 模型计算引擎(Engine) 计算图框架(Graph) • 模型计算引擎Engine 模型结构处理 与PS通信交换模型参数 计算图的计算 • 计算图框架Graph 计算逻辑抽象op,通过op组合形成模型结构 提供正0 码力 | 41 页 | 5.96 MB | 1 年前3
AI大模型千问 qwen 中文文档1.15.4 检索增强(RAG) 现在您可以输入查询,Qwen1.5 将基于索引文档的内容提供答案。 query_engine = index.as_query_engine() your_query = "" print(query_engine.query(your_query).response) 1.16 Langchain This guide helps 0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquessparsifying activation maps to produce robust models. Rhu et al., through their work on Compression DMA Engine12, observed that a non-trivial fraction of activation values for ReLU activation function are naturally International Conference on Machine Learning. PMLR, 2020. 12 Rhu, Minsoo, et al. "Compressing DMA engine: Leveraging activation sparsity for training deep neural networks." 2018 IEEE International Symposium0 码力 | 34 页 | 3.18 MB | 1 年前3
Lecture 1: Overviewitself Example 2 T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words Feng Li (SDU) Overview September 6, 2023 10 / 57 Categorize email messages as spam or legitimate P: Percentage of email messages correctly classified E: Database of emails, some with human-given labels Example 4 T: Driving on four-lane highways using vision0 码力 | 57 页 | 2.41 MB | 1 年前3
亚马逊AWSAI Services Overviewdetection, sequence matching, regression analysis, network/tribe analysis Netflix • Recommendation engine Pinterest • Image recognition search Fraud.net • Detect online payment fraud DataXu • Leverage0 码力 | 56 页 | 4.97 MB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务Model 训练模型 保存和加载 h5 模型 保存和加载 SavedModel 模型 Fashion MNIST 数据集介绍 Original MNIST dataset The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and0 码力 | 52 页 | 7.99 MB | 1 年前3
Keras: 基于 Python 的深度学习库32) model.add(Flatten()) # 现在:model.output_shape == (None, 65536) 5.2.5 Input [source] keras.engine.topology.Input() Input() 用于实例化 Keras 张量。 Keras 张量是底层后端 (Theano, TensorFlow or CNTK) 的张量对象,我们增加了一些特性,使 如果你的层更改了输入张量的形状,你应该在这 里定义形状变化的逻辑,这让 Keras 能够自动推断各层的形状。 from keras import backend as K from keras.engine.topology import Layer import numpy as np class MyLayer(Layer): def __init__(self, output_dim,0 码力 | 257 页 | 1.19 MB | 1 年前3
共 10 条
- 1













