积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部英语(14)中文(简体)(7)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.042 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    anaconda prompt, this will open base Anaconda environment. Let us create a new conda environment. This process is similar to virtualenv. Type the below command in your conda terminal: conda create --name PythonCPU object. Here, the feature extraction process goes from the output of one layer into the input of the next subsequent layer. By using this approach, we can process huge amount of features, which makes fiber called “axons” and “Dendrites”. The main role of axon is to transmit information from one neuron to another to which it is connected. Similarly, the main role of dendrites is to receive the information
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    NGC. ‣ SSD300 v1.1 model: This model is based on the SSD: Single Shot MultiBox Detector paper. The main difference between this model and the model described in the paper is in the backbone. Specifically provides the experimental UCC process group for the distributed backend. Users can experiment with it by creating UCC as the default process group via: torch.distributed.init_process_group(backend="ucc", kwargs) kwargs) or a side process group with any default via: torch.distributed.init_process_group(backend=any_backend, default_pg_kwargs) ucc_pg = torch.distributed.new_group(backend="ucc", ucc_pg_kwargs) Announcements
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    implementation details using code samples. We finish with a hands-on project that will walk you through the process of applying quantization in practical situations using popular frameworks like Tensorflow and Tensorflow has been used across different parts of Computer Science especially in signal processing. It is a process of converting high precision continuous values to low precision discrete values. Take a look at figure for going from this higher-precision domain (32-bits) to a quantized domain (b-bit values). This process is nothing but (cue drum roll!) ...Quantization! Before we get our hands dirty, let us first make
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    take infinitely many values. In the context of deep learning, the parameters that influence the process of learning are called hyperparameters to differentiate them from model parameters. The performance Hence, we need a sophisticated approach to tune them. Hyperparameter Optimization (HPO) is the process of choosing values for hyperparameters that lead to an optimal model. HPO performs trials with different Hyperparameter Optimization Hyperparameter Optimization improves two aspects of the training process: performance and convergence. Hyperparameters like number of filters in a convolution network or
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    False 然后你可以用如下命令运行模型: ./main -m qwen1_5-7b-chat-q5_k_m.gguf -n 512 --color -i -cml -f prompts/chat-with- �→qwen.txt -n 指的是要生成的最大 token 数量。这里还有其他超参数供你选择,并且你可以运行 ./main -h 以了解它们。 1.4.3 生成你的 GGUF # To learn about loading model to multiple GPUs, # visit https://github.com/AutoGPTQ/AutoGPTQ/blob/main/docs/tutorial/02-Advanced- �→Model-Loading-and-Best-Practice.md tokenizer = AutoTokenizer.from_p response from the model where it can see the function response print(responses) if __name__ == '__main__': test() 1.14 Qwen-Agent Qwen-Agent 是一个基于 Qwen 的指令跟随、工具使用、计划和记忆能力来开发 LLM 应用程序的框架。它还 附带了一些示例应用
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    algorithm that works perfectly, and there is a large amount of unseen data that the algorithm needs to process. Unlike traditional algorithm problems where we expect exact optimal answers, machine learning applications primary aspects: Training Efficiency Training Efficiency involves benchmarking the model training process in terms of computation cost, memory cost, amount of training data, and the training latency. It recover the data. An example could be reading the summary of a book. You can get an idea of the book’s main points, but you will lose the finer details. We cover these in more detail in Chapter 2. (Figure
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    training process that enables the child to reach the same accuracy by seeing a smaller number of samples, that process would be sample efficient. Similarly, a sample efficient model training process requires to evaluate the effective utilization of the training data. Labeling data is often an expensive process both in terms of time consumption and fiscal expenditure because it involves human labelers looking light. The same process can be repeated for other objects. If the child learns to recognize these objects accurately with fewer numbers of distinct objects being shown, we have made this process more label
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    models in literature. The crux is that the amount of data needed for the downstream task in this process is much less as compared to the amount of data we would have needed if we were training a task specific BERT with an Academic Budget." ACL Anthology, Nov. 2021, pp. 10644-52, doi:10.18653/v1/2021.emnlp-main.831. 10 OpenAI GPT-3 API https://openai.com/api/ 9 GitHub Copilot: https://github.com/features/copilot BERT-Small models when using and not-using the pre-trained model weights. We repeated the same process for BERT-Base and noticed a similar effect. Using a pre-trained BERT-Base model achieves a best accuracy
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 此引发一切后果贡献者概不负责。 The main reason of organizing PDF version based the Chinese Keras Markdown is that it is easy to read locally 参数来命名任何层。 main_input = Input(shape=(100,), dtype='int32', name='main_input') # Embedding 层将输入序列编码为一个稠密向量的序列,每个向量维度为 512。 x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input) # activation='relu')(x) # 最后添加主要的逻辑回归层 main_output = Dense(1, activation='sigmoid', name='main_output')(x) 然后定义一个具有两个输入和两个输出的模型: model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    of NumPy will also be useful! What is PyTorch? ● An machine learning framework in Python. ● Two main features: ○ N-dimensional Tensor computation (like NumPy) on GPUs ○ Automatic differentiation for Training Define Neural Network Loss Function Optimization Algorithm More info about the training process in last year's lecture video. Training & Testing Neural Networks Validation Testing Training Guide
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorialPyTorchReleaseNotesEfficientDeepLearningBookEDLChapterCompressionTechniquesAutomationAI模型千问qwen中文文档IntroductionAdvancedTechnicalReviewKeras基于Python深度学习MachinePytorchTutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩