积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(6)机器学习(6)

语言

全部中文(简体)(4)英语(2)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.035 秒,为您找到相关结果约 6 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《TensorFlow 快速入门与实战》2-TensorFlow初接触

    TensorFlow https://hub.docker.com/editions/community/docker-ce-desktop-mac 1. Install Docker for Mac 2. Run Docker for Mac 3. Pull a TensorFlow Docker image $ docker pull tensorflow/tensorflow:nightly-jupyter
    0 码力 | 20 页 | 15.87 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Prerequisites You must satisfy the following requirements:  Any kind of OS (Windows, Linux or Mac)  Python version 3.5 or higher. Python Keras is python based neural network library so python always recommended to use a virtual environment while developing Python applications. Linux/Mac OS Linux or mac OS users, go to your project root directory and type the below command to create virtual the environment This step will configure python and pip executables in your shell path. Linux/Mac OS Now we have created a virtual environment named “kerasvenv”. Move to the folder and type the
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    fact, the general formulation of Y = XW + b, is the Multiply-Accumulate operation (MAC). Figure 2-9 describes the MAC operation for A = BC + D. B, C, and D are all matrices. The number of MACs in a model fixed-point SIMD instructions in Intel's SSE4 instruction set which can parallelize Multiply-Accumulate (MAC) operations. 7 Vanhoucke, Vincent, Andrew Senior, and Mark Z. Mao. "Improving the speed of neural
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    Pytorch 的开发环境搭建十分的简洁,它的依赖只有 Python 语 言 SDK, 只 要 有 了 Python 语 言 包 支 持, 无 论 是 在 windows 平台、ubuntu 平台还是 Mac 平台都靠一条命令 行就可以完成安装。首先是安装 Python 语言包支持,当前 Pytorch 支持的 Python 语言版本与系统对应列表如下: 表 -1(参考 Pytorch 官网与 Github) Python3�7 Python3.8 Linux CPU/GPU 支持 支持 支持 Windows CPU/GPU 支持 支持 支持 Linux (aarch64) CPU 支持 支持 支持 Mac (CPU) 支持 支持 支持 当前最新稳定版本是 Pytorch 1.9.0、长期支持版本是 Pytorch 1.8.2(LTS),此外Python语言支持版本3.6表示支持3.6.x版本,
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    ���������Open Source Computer Vision Library, OpenCV���BSD����� ���C ++�Python�Java�����Windows�Linux�Mac OS�iOS�Android� OpenCV�������������������� ������C / C ++����� OpenCL ���������������� �� OpenCV
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    开发环境安装 在领略完深度学习框架所带来的便利后,现在来着手在本地计算机环境上安装 PyTorch 最新版。PyTorch 框架支持多种常见的操作系统,如 Windows 10、Ubuntu、Mac OS 等,支持运行在 NVIDIA 显卡上的 GPU 版本和仅使用 CPU 完成计算的 CPU 版本。这 里以最为常见的 Windows 10 系统,NVIDIA GPU 和 Python 语言环境为例,介绍如何安装
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
TensorFlow快速入门实战接触kerastutorialEfficientDeepLearningBookEDLChapterCompressionTechniquesPyTorchOpenVINO开发系列教程第一一篇第一篇人脸识别人脸识别深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩