积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)机器学习(19)

语言

全部中文(简体)(11)英语(8)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    [==============================] - 77s 968ms/step - loss: 4.5983 - accuracy: 0.3833 - val_loss: 1.8394 - val_accuracy: 0.6833 Epoch 2/100 43/43 [==============================] - 21s 493ms/step - loss: 0.1100 - accuracy: [==============================] - 21s 497ms/step - loss: 2.1797e-07 - accuracy: 1.0000 - val_loss: 1.9971 - val_accuracy: 0.7000 Epoch 99/100 43/43 [==============================] - 21s 496ms/step - loss: 1.9424e-07 val_loss: 1.9958 - val_accuracy: 0.7010 Epoch 100/100 43/43 [==============================] - 21s 497ms/step - loss: 1.6654e-07 - accuracy: 1.0000 - val_loss: 1.9950 - val_accuracy: 0.7010 Figure 3-8 shows
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    [==============================] - 5s 13ms/step - loss: 0.8423 - accuracy: 0.7685 - val_loss: 0.2341 - val_accuracy: 0.9361 Epoch 2/10 313/313 [==============================] - 3s 11ms/step - loss: 0.1382 - accuracy: [==============================] - 3s 11ms/step - loss: 0.0662 - accuracy: 0.9823 - val_loss: 0.1757 - val_accuracy: 0.9516 Epoch 4/10 313/313 [==============================] - 3s 11ms/step - loss: 0.0343 - accuracy: [==============================] - 3s 11ms/step - loss: 0.0211 - accuracy: 0.9944 - val_loss: 0.1833 - val_accuracy: 0.9561 Epoch 6/10 313/313 [==============================] - 3s 11ms/step - loss: 0.0120 - accuracy:
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    =] - 3s 6ms/step - loss: 0.1729 - sparse_categorical_accuracy: 0.9500 - val_loss: 0.0753 - val_sparse_categorical_accuracy: 0.9789 Epoch 2/15 469/469 [==============================] - 2s 5ms/step - loss: =] - 2s 5ms/step - loss: 0.0412 - sparse_categorical_accuracy: 0.9873 - val_loss: 0.0486 - val_sparse_categorical_accuracy: 0.9837 Epoch 4/15 469/469 [==============================] - 2s 5ms/step - loss: =] - 3s 6ms/step - loss: 0.0279 - sparse_categorical_accuracy: 0.9916 - val_loss: 0.0368 - val_sparse_categorical_accuracy: 0.9887 Epoch 6/15 469/469 [==============================] - 3s 6ms/step - loss:
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 keras tutorial

    [==============================] - 84s 1ms/step - loss: 0.2687 - acc: 0.9173 - val_loss: 0.0549 - val_acc: 0.9827 Epoch 2/12 60000/60000 [==============================] - 86s 1ms/step - loss: 0.0899 - acc: 0 [==============================] - 83s 1ms/step - loss: 0.0666 - acc: 0.9804 - val_loss: 0.0362 - val_acc: 0.9879 Epoch 4/12 60000/60000 [==============================] - 81s 1ms/step - loss: 0.0564 - acc: 0 [==============================] - 86s 1ms/step - loss: 0.0472 - acc: 0.9861 - val_loss: 0.0312 - val_acc: 0.9901 Epoch 6/12 60000/60000 [==============================] - 83s 1ms/step - loss: 0.0414 - acc: 0
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    [==============================] - 34s 90ms/step - loss: 0.8422 - accuracy: 0.6502 - val_loss: 0.8573 - val_accuracy: 0.6633 Epoch 2/50 184/184 [==============================] - 10s 56ms/step - loss: 0.7534 - accuracy: 10s 57ms/step - loss: 0.6946 - accuracy: 0.7139 - val_loss: 0.7629 - val_accuracy: 0.6743 xxxxxxxxx Skip to 48th epoch xxxxxxxxx Epoch 48/50 184/184 [==============================] - 11s 59ms/step [==============================] - 10s 56ms/step - loss: 0.0910 - accuracy: 0.9561 - val_loss: 0.5369 - val_accuracy: 0.8473 Epoch 50/50 184/184 [==============================] - 11s 58ms/step - loss: 0.0819 - accuracy:
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    取 pd.read_sql() | 从 SQL 表 或 数 据 库 读 取 pd.read_json() | 从JSON格式的URL或文件读取 pd.read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json()
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    取 pd.read_sql() | 从 SQL 表 或 数 据 库 读 取 pd.read_json() | 从JSON格式的URL或文件读取 pd.read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json()
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    [==============================] - 51s 59ms/step - loss: 0.7432 - accuracy: 0.6898 - val_loss: 0.3910 - val_accuracy: 0.8642 Epoch 2/4 469/469 [==============================] - 16s 33ms/step - loss: 0.3552 - accuracy: [==============================] - 16s 34ms/step - loss: 0.2856 - accuracy: 0.9022 - val_loss: 0.2925 - val_accuracy: 0.9000 Epoch 4/4 469/469 [==============================] - 16s 33ms/step - loss: 0.2481 - accuracy: [==============================] - 41s 54ms/step - loss: 0.4249 - accuracy: 0.8590 - val_loss: 0.2892 - val_accuracy: 0.9021 Epoch 2/4 469/469 [==============================] - 16s 34ms/step - loss: 0.2663 - accuracy:
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 李东亮:云端图像技术的深度学习模型与应用

    本页图片均来自公开摄像头 SACC2017 检测-人脸检测/人形检测 手机 服务器 可缩小尺寸 240P 720P CPU ARM(千元机) E5-2630 时间 50ms 120ms GPU 2-5ms(K40) SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained
    0 码力 | 26 页 | 3.69 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Office: N3-312-1 Education: 2010-2015, PhD, Nanyang Technological University, Singapore. 2007-2010, MS, Shandong University, China. 2003-2007, BS, Shandong Normal University, China. Employment: Sep 2022 (15%) + Final exam (50%) Website: https://funglee.github.io/ml/ml.html Teaching Assistants (TAs): Ms Lina Wang Mr Fangzheng Duan Feng Li (SDU) Overview September 6, 2023 4 / 57 Suggested Readings Hang
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesArchitecturesCompressionkerastutorialAdvanced机器学习课程温州大学01引言深度TechnicalReview李东亮云端图像技术模型应用LectureOverview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩