 《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南machine learning platform." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017. TFX - �� TensorFlow ���������� Baylor, Denis, et al. "Tfx: A tensorflow-based machine learning platform." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017. TFX - �� TensorFlow ���������� https://github.com/tensorflow/tfx0 码力 | 46 页 | 38.88 MB | 1 年前3 《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南machine learning platform." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017. TFX - �� TensorFlow ���������� Baylor, Denis, et al. "Tfx: A tensorflow-based machine learning platform." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017. TFX - �� TensorFlow ���������� https://github.com/tensorflow/tfx0 码力 | 46 页 | 38.88 MB | 1 年前3
 机器学习课程-温州大学-10机器学习-聚类Algorithm for Discovering Clusters in Large Spatial Databases with Noise[J]. Proc.int.conf.knowledg Discovery & Data Mining, 1996. [3] Andrew Ng. Machine Learning[EB/OL]. Stanford University,2014. https://www Estimates for Data Clustering, Visualization, and Outlier Detection[J]. Acm Transactions on Knowledge Discovery from Data, 2015. [11] 彭 涛 . 人 工 智 能 概 论 [EB/OL]. 北 京 联 合 大 学 ,2020. https://www.icourse163.org/course/BUU-0 码力 | 48 页 | 2.59 MB | 1 年前3 机器学习课程-温州大学-10机器学习-聚类Algorithm for Discovering Clusters in Large Spatial Databases with Noise[J]. Proc.int.conf.knowledg Discovery & Data Mining, 1996. [3] Andrew Ng. Machine Learning[EB/OL]. Stanford University,2014. https://www Estimates for Data Clustering, Visualization, and Outlier Detection[J]. Acm Transactions on Knowledge Discovery from Data, 2015. [11] 彭 涛 . 人 工 智 能 概 论 [EB/OL]. 北 京 联 合 大 学 ,2020. https://www.icourse163.org/course/BUU-0 码力 | 48 页 | 2.59 MB | 1 年前3
 机器学习课程-温州大学-04机器学习-朴素贝叶斯classifiers: A decision-tree hybrid[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, 202-207, 1996. [7] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. 310 码力 | 31 页 | 1.13 MB | 1 年前3 机器学习课程-温州大学-04机器学习-朴素贝叶斯classifiers: A decision-tree hybrid[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, 202-207, 1996. [7] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. 310 码力 | 31 页 | 1.13 MB | 1 年前3
 机器学习课程-温州大学-05机器学习-机器学习实践classifiers: A decision-tree hybrid[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, 202-207, 1996. [7] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. [8]0 码力 | 33 页 | 2.14 MB | 1 年前3 机器学习课程-温州大学-05机器学习-机器学习实践classifiers: A decision-tree hybrid[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, 202-207, 1996. [7] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. [8]0 码力 | 33 页 | 2.14 MB | 1 年前3
 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别FaceNet ��� ������ Torch ��������� CUDA� ������������ OpenFace ��������� Keras � TensorFlow (low-level API) ��� FaceNet� “Hello TensorFlow” Try it �������� ������ ������ ����������� �����������0 码力 | 81 页 | 12.64 MB | 1 年前3 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别FaceNet ��� ������ Torch ��������� CUDA� ������������ OpenFace ��������� Keras � TensorFlow (low-level API) ��� FaceNet� “Hello TensorFlow” Try it �������� ������ ������ ����������� �����������0 码力 | 81 页 | 12.64 MB | 1 年前3
 机器学习课程-温州大学-08机器学习-集成学习Boosting System[C]//Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM: 785–794. [10] NIELSEN Didrik. Tree Boosting With XGBoost - Why Does XGBoost0 码力 | 50 页 | 2.03 MB | 1 年前3 机器学习课程-温州大学-08机器学习-集成学习Boosting System[C]//Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM: 785–794. [10] NIELSEN Didrik. Tree Boosting With XGBoost - Why Does XGBoost0 码力 | 50 页 | 2.03 MB | 1 年前3
 动手学深度学习 v2.0Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. Advances in neural information processing systems (pp. 689– 696). with temporal dynamics. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 447–456). [Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., & Hinton0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. Advances in neural information processing systems (pp. 689– 696). with temporal dynamics. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 447–456). [Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., & Hinton0 码力 | 797 页 | 29.45 MB | 1 年前3
共 7 条
- 1













