PyTorch Release Notes-it --rm -v local_dir:container_dir nvcr.io/nvidia/ pytorch:-py3 ‣ If you have Docker 19.02 or earlier, a typical command to launch the container is: nvidia-docker run -it --rm -v local_dir:container_dir --rm -v local_dir:container_dir nvcr.io/nvidia/ pytorch: -py3 ‣ If you have Docker 19.02 or earlier, a typical command to launch the container is: nvidia-docker run -it --rm -v local_dir:container_dir of PyTorch in /opt/ pytorch. It is prebuilt and installed in the default Python environment (/usr/local/lib/ python3.10/dist-packages/torch) in the container image. The container also includes the following: 0 码力 | 365 页 | 2.94 MB | 1 年前3
AI大模型千问 qwen 中文文档--local-dir <local_dir> --local-dir- �→use-symlinks False 比如: huggingface-cli download Qwen/Qwen1.5-7B-Chat-GGUF qwen1_5-7b-chat-q5_k_m.gguf -- �→local-dir . --local-dir-use-symlinks bias ) else: state_dict = trainer.model.state_dict() if trainer.args.should_save and trainer.args.local_rank == 0: trainer._save(output_dir, state_dict=state_dict) 方法 safe_save_model_for_hf_trainer 通过使用 make_supervised_data_module , 通 过 使 用 SupervisedDataset 或 LazySupervisedDataset 来构建数据集。 def train(): global local_rank parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments, LoraArguments) 0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewonce again, so that the TPU doesn't complain about the # weights of the TF Hub models being on local storage. os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'UNCOMPRESSED' We first start by importing the BERT multiple local minima might exist. Typical deep learning objective functions are non-convex too, and directly working with these functions might lead to the optimizer getting stuck in a local minima. Continuation add the harder examples we start to move towards the original loss landscape which might have many local minima. The authors see an improvement in model quality when using curriculum learning to train the0 码力 | 31 页 | 4.03 MB | 1 年前3
人工智能发展史edu/~fritz/absps/waibelTDNN.pdf Moving window ▪ Inspired LeCun Recurrent Neural Network ▪ Spatial Local ▪ Temporal Local http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Yoshua Bengio:1993 ence/ http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf ▪ 2015 https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf AlphaZero http://www.iro.umontreal.ca/~vi0 码力 | 54 页 | 3.87 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesexercises, we worked out the logic to quantize a high precision vector to low precision to save storage space and the transmission bandwidth. Let’s say a receiver received this data. How would it decode in the number of quantization bits. Quantization is a useful technique in the situation where the storage space or the transmission bandwidth is expensive like deep learning models on mobile devices. Mobile stored in an N-dimensional matrix (tensor), and the weight matrix W is most expensive in terms of storage. Can we efficiently represent this weight matrix W to reduce the model size? We already have worked0 码力 | 33 页 | 1.96 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数按需 获取/更新 Storage 异步训练流⽔线和多级存储:提升性能,降低内存成本 � 问题: � Learner线程中参数拉取和参数更新对性能影响⼤ � 内存成为主要资源瓶颈。由于需要等待全部参数 就绪,Parameter 效果: � 在不影响训练效果的情况下,降低参数准备与更新耗时,提 ⾼训练速度。训练耗时下降超50% � 异步storage线程,⽀持基于冷热数据的多级存储。内存消 耗下降30%-70% 磁盘 训练 Lookup+ pooling 算⼦融合 Unique keys Storage 近期训练 参数管理 需保持顺 序,以保证 训练效果 样本读取 样本解析 基于GPU的多级存储训练:更⾼的性价⽐0 码力 | 22 页 | 6.76 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesyour deep learning models. We start with sparsity. If your goal was to optimize your brain for storage, you can often trim a lot of useless trivia without it impacting your life materially. This is also picking the connections and nodes to prune, and how to prune a given deep learning model to achieve storage and latency gains with a minimal performance tradeoff. Next, the chapter goes over weight sharing Sparse compressed models achieve higher compression ratio which results in lower transmission and storage costs. Figure 5-1 visually depicts two networks. The one on the left is the original network and0 码力 | 34 页 | 3.18 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data Clean Iterative training Semi-supervised Labeling0 码力 | 21 页 | 1.71 MB | 1 年前3
全连接神经网络实战. pytorch 版any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without the prior written permission of the publisher. Art. No 0 ISBN 000–00–0000–00–00 码力 | 29 页 | 1.40 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesmetrics=['accuracy']) return model model = create_model() model.summary() Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim _ordering_tf_kernels_notop0 码力 | 56 页 | 18.93 MB | 1 年前3
共 22 条
- 1
- 2
- 3













