《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionvery significant. Enabling On-Device Deployment With the advent of smartphones, Internet-of-Things (IoT) devices (refer to Figure 1-5 for the trend), and the applications deployed on them have to be realtime for data breaches. The law went into effect in 2018. Figure 1-5: Growth in the number of mobile and IoT devices over time. The lighter blue bars represent forecasts. (Data Source: 1, 2) In this book, we well as other computer bots in games like chess, shogi, and go. For the purpose of deployment in IoT and edge devices, both Google and NVidia have come up with accelerators that can be used for fast inference0 码力 | 21 页 | 3.17 MB | 1 年前3
 《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案新零售——阿里研究院新零售研究报告》 AI:贯穿新零售全流程 ——《C时代 新零售——阿里研究院新零售研究报告》 AR/VR:虚实结合的消费体验 ——《C时代 新零售——阿里研究院新零售研究报告》 传感器和IoT:提升门店消费体验 ——《C时代 新零售——阿里研究院新零售研究报告》 用户需求:线下门店业绩如何提升? 全球实体零售发展遭遇天花板 品牌间存量竞争 ——《C时代 新零售——阿里研究院新零售研究报告》0 码力 | 49 页 | 12.50 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesmentioned in Chapter 1, TFLite (Tensorflow Lite) helps to convert and deploy tensorflow models to IoT and edge devices. It is optimized for ARM based processors and supports accelerated inference using0 码力 | 33 页 | 1.96 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesmemory, this issue can be a bottleneck if the model is going to be deployed on-device (smartphones, IoT devices, etc.), where transmitting the model to the device is limited by the user’s bandwidth, and0 码力 | 53 页 | 3.92 MB | 1 年前3
共 4 条
- 1
 













