积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(24)机器学习(24)

语言

全部英语(18)中文(简体)(6)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.036 秒,为您找到相关结果约 24 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Tutorial

    time: • Google Colab provides free Tesla K80 GPU of about 12GB. You can run the session in an interactive Colab Notebook for 12 hours. • https://colab.research.google.com/ Misc • Dynamic VS Static Computation loss loss y_train_tensor Misc • Dynamic VS Static Computation Graph Building the graph and computing the graph happen at the same time. Seems inefficient, especially if we are building the same
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    approaches towards efficiency is compression to reduce data size. For the longest time in the history of computing, scientists have worked tirelessly towards storing and transmitting information in as few bits as approximately the same . Such a model is useful if we want to deploy a model in a space constrained environment like a mobile device. To summarize, compression techniques help to achieve an efficient representation the repository in the form of Jupyter notebooks. You can run the notebooks in Google’s Colab environment which provides free access to CPU, GPU, and TPU resources. You can also run this locally on your
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    which combined the accuracy and latency metrics. It searched for Pareto optimal child networks by computing their latencies 7 Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for defines a ChildManager class which is responsible for spawning child networks, training them, and computing rewards. The layers constant defined in the class indicates the stacking order of the cells. Each the second step, the child network is training on the CIFAR-10 dataset. The third step involves computing reward which is the difference between the accuracy and the rolling average of past accuracies over
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Singapore. Research Interests: Distributed Algorithms and Systems, Wireless Net- works, Mobile Computing, Internet of Things. Feng Li (SDU) Overview September 6, 2023 3 / 57 Course Information We will unlabeled example in the environment Learner can construct an arbitrary example and query an oracle for its label Learner can design and run experiments directly in the environment without any human guidance (SDU) Overview September 6, 2023 33 / 57 Reinforcement Learning Learning from interaction (with environment) Goal-directed learning Learning what to do and its effect Trial-and-error search and delayed
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    Classic AI Modern AI 2016~Now 2010~Now AIIDE IEEE CIG SSCAIT Reinforcement Learning Agent Environment Action Observation Reward Goal Deep Reinforcement Learning What is next? • All above are Overcoming catastrophic forgetting in neural networks Memory-Augmented Neural Networks Source: Hybrid computing using a neural network with dynamic external memory Work Fun Play Hard
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 keras tutorial

    and deep learning models. TensorFlow is very flexible and the primary benefit is distributed computing. CNTK is deep learning framework developed by Microsoft. It uses libraries such as Python, C#, quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Virtualenv is used to manage Python packages for different projects. This will be helpful to a virtual environment while developing Python applications. Linux/Mac OS Linux or mac OS users, go to your project root directory and type the below command to create virtual environment, python3
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Before you begin Before you can run an NGC deep learning framework container, your Docker ® environment must support NVIDIA GPUs. To run a container, issue the appropriate command as explained in Running Docker container (defaults to all GPUs, but can be specified by using the NVIDIA_VISIBLE_DEVICES environment variable). For more information, refer to the nvidia-docker documentation. Note: Starting in before you proceed to step 3. 3. To run the container image, select one of the following modes: ‣ Interactive ‣ If you have Docker 19.03 or later, a typical command to launch the container is: docker run
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    'model_server': 'dashscope', # 'api_key': 'YOUR_DASHSCOPE_API_KEY', # It will use the `DASHSCOPE_API_KEY' environment variable if 'api_key' is not␣ �→set here. # Use your own model service compatible with OpenAI bge-small as the embedding model or modify the context window size or text chunk size depending on your computing resources. Qwen 1.5 model families support a maximum of 32K context window size. import torch from
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    them. Concretely, a practitioner might want to experiment with at least the following aspects: 1. Computing saliency scores. 2. Deciding on a pruning schedule. 3. Unstructured / Structured sparsity. Seems derivative gives us a clearer insight into how important might be to minimize the loss. Since computing pairwise second-derivatives for all and might be very expensive (even with just weights, this proportion to the mean magnitude of momentum of weights in that layer. There might be other ways of computing saliency scores, but they will all try to approximate the importance of a given weight at a certain
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    observed that, the feature mapping leads to a huge number number of new features, such that i) computing the mapping itself can be inefficient, especially when the new feature space is of much higher dimension; can be expensive (e.g., we have to store all the high-dimensional images of the data samples and computing inner products in the high-dimensional feature space is of considerable overhead). Fortunately, implicitly defines a mapping φ(x) = {x2 1, √ 2x1x2, x2 2} Through the kernel function, when computing the inner product < φ(x), φ(z) >, we do not have to map x and z into the new higher-dimensional
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorchTutorialEfficientDeepLearningBookEDLChapterCompressionTechniquesAutomationLectureOverview星际争霸星际争霸人工智能人工智能kerastutorialReleaseNotesAI模型千问qwen中文文档AdvancedonSupportVectorMachine
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩