积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)机器学习(23)

语言

全部英语(18)中文(简体)(5)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.068 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    Square, Netflix, Huawei and Uber are currently using Keras. This tutorial walks through the installation of Keras, basics of deep learning, Keras models, Keras layers, Keras modules and finally conclude .............................................................................. 1 2. Keras ― Installation ............................................................................................. .. 3 Keras Installation Steps ................................................................................................................................... 3 Keras Installation Using Python
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Getting Started Guide. ‣ For non-DGX users, see NVIDIA ® GPU Cloud ™ (NGC) container registry installation documentation based on your platform. ‣ Ensure that you have access and can log in to the NGC information, refer to the nvidia-docker documentation. Note: Starting in Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed (for browser or by analyzing text reports. DL Prof is available on NGC or through a Python PIP wheel installation. ‣ The TensorCore example models are no longer provided in the core PyTorch container (previously
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    username . Since /rwproject/kdd-db/ is a remote folder, it may take several minutes for the installation to finish. 3. Add the code that initializes Miniconda to your shell initialization script. environment) or a new environment. If you want to install PyTorch to the default environment, skip Steps 1. 1. Create a new conda environment. pytorch is the name of the environment to be created. You
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    class account. • Miniconda is highly recommended, because: • It lets you manage your own Python installation • It installs locally; no admin privileges required • It’s lightweight and fits within your disk com/pytorch/pytorch • Good Blogs: (with examples and code) • https://lelon.io/blog/2018/02/08/pytorch-with-baby-steps • https://www.tutorialspoint.com/pytorch/index.htm • https://github.com/hunkim/PyTorchZeroToAll •
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    模型文档。 或 者, 你 可 以 编 写 一 个 生 成 批 处 理 训 练 数 据 的 生 成 器, 然 后 使 用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。 你可以在 CIFAR10 example 中找到实践代码。 3.3.10 在验证集的误差不再下降时,如何中断训练? 你可以使用 EarlyStopping validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None) 以固定数量的轮次(数据集上的迭代)训练模型。 参数 • x: 训练数据的 Numpy 数组。如果模型中的输入层被命名,你也可以传递一个字典,将输 模型 43 • shuffle: 布尔值(是否在每轮迭代之前混洗数据)或者字符串 (batch)。batch 是处理 HDF5 数据限制的特殊选项,它对一个 batch 内部的数据进行混洗。当 steps_per_epoch 非 None 时,这个参数无效。 • class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函 数(仅在训练期间)。这可能有助于告
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    64,通过对整个序列预测的计算,让我们更仔细地看一下k步预测的困难。 max_steps = 64 features = torch.zeros((T - tau - max_steps + 1, tau + max_steps)) # 列i(isteps+1) for i in range(tau): features[: features[:, i] = x[i: i + T - tau - max_steps + 1] # 列i(i>=tau)是来自(i-tau+1)步的预测,其时间步从(i)到(i+T-tau-max_steps+1) for i in range(tau, tau + max_steps): (continues on next page) 296 8. 循环神经网络 (continued from previous i - tau:i]).reshape(-1) steps = (1, 4, 16, 64) d2l.plot([time[tau + i - 1: T - max_steps + i] for i in steps], [features[:, (tau + i - 1)].detach().numpy() for i in steps], 'time', 'x', legend=[f'{i}-step
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    step approach for pruning. The three steps are: Train Connectivity, Prune Connections, and Train Weights. The algorithm in figure 5-2 is based on these three steps. Their approach is called iterative pruning Compute the new centroids by computing the mean of all the points assigned to each cluster. 4. Run steps (2) & (3) until convergence. Notice that this algorithm’s runtime is not deterministic and depends want to create (num_clusters), the number of steps we want to run this algorithm for, and finally the learning rate. def get_centroids(x, num_clusters, num_steps=10, learning_rate=1e-3, verbose=1): """Get
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    --num_train_epochs: the number of training epochs. • --gradient_accumulation_steps: the number of gradient accumulation steps. • --per_device_train_batch_size: the batch size per GPU for training, and per_device_train_batch_size × number_of_gpus × gradient_accumulation_steps. • --learning_rate: the learning rate. • --warmup_steps: the number of warmup steps. • --lr_scheduler_type: the type of learning rate scheduler --warmup_steps 100 \ --weight_decay 0.1 \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 4 \ --ddp_timeout 9000 \ --learning_rate 5e-6 \ --lr_scheduler_type cosine \ --logging_steps 1 \ --cutoff_len
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    as population) and trains them to convergence. Each trial is trained for a predetermined number of steps with random values for the hyperparameters. Then, every trial’s weights and hyperparameters are replaced next action and so on. We can design a recurrent model with a fixed or a variable number of time steps. Figure 7-5 shows a general architecture of the NAS recurrent model. The time step at takes the output units stacked (vertical stack) on top of each other to learn complex relationships between the time steps. Zoph et. al. formulated the architectural search as an expectation maximization problem. Given a
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    as introduced in chapter 3 do help us achieve better quality with fewer labels and fewer training steps required for convergence, they do not alleviate the concerns completely. What should we do to get Self-Supervised Learning Recipe We can break-down common self-supervised learning into two broad steps: 1. Pre-training: This step teaches the model about the world it is operating in (language, vision task is, given two sentences and , predict if follows . Figure 6-3: Pre-training and Fine-tuning steps for BERT. Source: Develin et al. For BERT, the pre-training loss is the mean of the losses for the
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorialPyTorchReleaseNotesrwcpu8InstructionInstallminicondapytorchTutorialKeras基于Python深度学习动手v2EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesAI模型千问qwen中文文档AutomationTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩