积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(37)机器学习(37)

语言

全部中文(简体)(22)英语(15)

格式

全部PDF文档 PDF(37)
 
本次搜索耗时 0.070 秒,为您找到相关结果约 37 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    debugging experience. In the container, see /workspace/README.md for information about customizing your PyTorch image. For more information about PyTorch, including tutorials, documentation, and examples, see: ‣ PyTorch website ‣ PyTorch project This document provides information about the key features, software enhancements and improvements, known issues, and how to run this container. PyTorch RN-08516-001_v23 access and can log in to the NGC container registry. Refer to NGC Getting Started Guide for more information. The deep learning frameworks, the NGC Docker containers, and the deep learning framework containers
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat 然后,您可以使用 create chat interface 来与 Qwen 进行交流: curl http://localhos 包中的 Python 客户端: from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) creating and quantizing GGUF files in quantization/llama.cpp. You can refer to that document for more information. 1.4.4 PPL 评测 llama.cpp 为我们提供了评估 GGUF 模型 PPL 性能的方法。为了实现这一点,你需要准备一个数据集,比如 “wiki 测试”。这里我们展示了一个运行测试的例子。
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012): 1097-1105. do linear algebra operations such as multiplying two Having such a toolbox to make our models pareto-optimal has the following benefits: Sustainable Server-Side Scaling Training and deploying large deep learning models is costly. While training is a one-time inference can be run completely on the user’s device without the need to send the input data to the server-side. New Applications Efficiency would also enable applications that couldn’t have otherwise been
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 keras tutorial

    [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> As of now the latest version is ‘3.7.2’. If Python is not installed, then visit the official analyzing the input in layer by layer manner, where each layer progressively extracts higher level information about the input. Let us take a simple scenario of analyzing an image. Let us assume that your main role of axon is to transmit information from one neuron to another to which it is connected. Similarly, the main role of dendrites is to receive the information being transmitted by the axons of
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    LarochelleH., BeygelzimerA., d\textquotesingle Alch é-BucF., FoxE., & GarnettR. (编辑), Advances in Neural Information Processing Systems 32 (页 8024–8035). Curran Associates, Inc. 检索来源: http://papers.neurips.cc/ Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” 出处 Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou 和 K. Q. Weinberger, 编辑, Curran Warde-Farley, S. Ozair, A. Courville 和 Y. Bengio, “Generative Adversarial Nets,” 出处 Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence 和 K. Q. Weinberger
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    loss),它是分类问题最常用的损失之一。本节我们将通过介绍信息论基础来理解交叉熵损失。如果 想了解更多信息论的细节,请进一步参考 本书附录中关于信息论的一节52。 3.4.7 信息论基础 信息论(information theory)涉及编码、解码、发送以及尽可能简洁地处理信息或数据。 熵 信息论的核心思想是量化数据中的信息内容。在信息论中,该数值被称为分布P的熵(entropy)。可以通过 以下方程得到: learning/distributions.html 52 https://d2l.ai/chapter_appendix‐mathematics‐for‐deep‐learning/information‐theory.html 3.4. softmax回归 109 信息量 压缩与预测有什么关系呢?想象一下,我们有一个要压缩的数据流。如果我们很容易预测下一个数据,那么 这个数据就很容 型。 • 我们可以使用困惑度来评价语言模型的质量。 103 https://d2l.ai/chapter_appendix‐mathematics‐for‐deep‐learning/information‐theory.html 316 8. 循环神经网络 练习 1. 如果我们使用循环神经网络来预测文本序列中的下一个字符,那么任意输出所需的维度是多少? 2. 为什么循环神经网络可以基
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    represent aspects of an input numerically. It must fulfill the following goals: a) To compress the information content of high-dimensional concepts such as text, image, audio, video, etc. to a low-dimensional animals occupy the top-left area of the plot. Note how we have compressed the high-dimensional information about animals into just two dimensions, and established a relationship between them purely using after having read this in many textbooks throughout our life. Hopefully, we have given enough information to make this actually straightforward. as the number of features that our model learns for each
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Mobile Computing, Internet of Things. Feng Li (SDU) Overview September 6, 2023 3 / 57 Course Information We will investigate fundamental concepts, techniques and algorithms in machine learning. The topics September 6, 2023 5 / 57 Prerequisite Courses Linear algebra Calculus Probability and Statistics Information theory Convex Optimization Feng Li (SDU) Overview September 6, 2023 6 / 57 Remarks Lectures knowledge from large databases (data mining) Market basket analysis (e.g. diapers and beer) Medical information mining (e.g. migraines to calcium channel blockers to magnesium) Computational studies of learning
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Such a shift has two side-effects. First, a part of the image “falls off” the top edge. That information will be lost. And the second, the lower part of the image doesn’t have any pixel data because it the press of his successful flights. The author has taken grammatical liberties to compress the information to save dollars. In spite of the obvious errors, the message is loud and clear. Figure 3-9: This an elementary level Spanish speaker’s response, “estoy ir mercado”, sufficiently conveys the information that the person is going to the market. A version of this example could be a native english speaker’s
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    in the history of computing, scientists have worked tirelessly towards storing and transmitting information in as few bits as possible. Depending on the use case, we might be interested in compressing in are losing some information as a trade off. It is especially applicable for multimedia (audio, video, images) data,, where it is likely that either humans who will consume the information will not notice notice the loss of some information, or do not necessarily care about the loss in quality. Figure 2-2: On the left is a high quality image of a cat. The cat on the right is a lower quality compressed image
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 37 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
PyTorchReleaseNotesAI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterIntroductionkerastutorial深度学习动手深度学习v2ArchitecturesLectureOverviewTechniquesCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩