AutoEncoder自编码器0 码力 | 29 页 | 3.49 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文预测 训练 预测 深度学习和传统机器学习 输入数据 深度学习算法 输入数据 特征工程 传统机器学习算法 非常耗费时间 以文本分类过程举例,常见 的特征提取算法包括: 词频 TF-IDF 互信息 信息增益 期望交叉熵 主成分分析 … 特征工程需要手工寻找特 征,花费大量人力,特征的 好坏往往决定最终结果 深度学习基础结构 基础神经元结构 多个神经元连接组成神经网络 字词表示 0, 0, 0, 0, 0, 0, 0, 0, … ] [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, … ] 服务器 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, … ] [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层 隐层 不同深度学习模型 后处理 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 策树) • 特征工程构造特征 • 不同领域定制优化成本高 • 常需要分类算法融合提升效果 深度学习(CNN,RNN等) • 端到端,无需大量特征工程0 码力 | 46 页 | 25.61 MB | 1 年前3
机器学习课程-温州大学-特征工程具有旋转、尺度、平移、视角及亮度不变性,有利于对目标 特征信息进行有效表达; ➢ SIFT 特征对参数调整鲁棒性好,可以根据场景需要调整适宜 的特征点数量进行特征描述,以便进行特征分析。 缺点:不借助硬件加速或者专门的图像处理器很难实现。 疑似特征点检测 去除伪特征点 特征点梯度 与方向匹配 特征描述向量的 生成 步骤 图像特征提取 3. 特征提取 21 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J] 2019,36(01) 1.词袋模型 将整段文本以词为单位切分开,然后每篇文章可以表示成一个长向量,向量的每 一个维度代表一个单词,而该维度的权重反映了该单词在原来文章中的重要程度 采用 TF-IDF 计算权重,公式为 ?? − ???(?, ?) = ??(?, ?) × ???(?) ??(?, ?) 表示单词 ? 在文档 ? 中出现的频率 ???(?) 是逆文档频率,用来衡量单词 ? 对表达语义所起的重要性,其表示为: 统计研究,2019,36(01) 过滤式(Filter): 先对数据集进行特征选择,其过程与后续 学习器无关,即设计一些统计量来过滤特 征,并不考虑后续学习器问题 包裹式(Wrapper): 就是一个分类器,它是将后续的学习器的 性能作为特征子集的评价标准 嵌入式(Embedding): 是学习器自主选择特征 4. 特征选择 特征选择的三种方法 28 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J]0 码力 | 38 页 | 1.28 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.5.1 基于多层感知器 (MLP) 的 softmax 多分类: . . . . . . . . . . . . 11 3.1.5.2 基于多层感知器的二分类: . . . . . . . . . . . . . . . . . . . . . . 12 3.1.5.3 类似 VGG Keras 模型? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.6.1 保存/加载整个模型(结构 + 权重 + 优化器状态) . . . . . . . . . 28 3.3.6.2 只保存/加载模型的结构 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 5.11.3 AlphaDropout [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.12 层封装器 wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.12.1 TimeDistributed0 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版20211211.11 LSTM/GRU 情感分类问题再战 11.12 预训练的词向量 11.13 参考文献 第 12 章 自编码器 12.1 自编码器原理 12.2 MNIST 图片重建实战 12.3 自编码器变种 12.4 变分自编码器 12.5 VAE 实战 12.6 参考文献 第 13 章 生成对抗网络 13.1 博弈学习实例 13.2 GAN 监督信号,即模型需要学习的映射为??: ? → ?,称为自监督学习(Self-supervised Learning)。在训练时,通过计算模型的预测值??(?)与自身?之间的误差来优化网络参数?。 常见的无监督学习算法有自编码器、生成对抗网络等。 强化学习 也称为增强学习,通过与环境进行交互来学习解决问题的策略的一类算法。 与有监督学习、无监督学习不同,强化学习问题并没有明确的“正确的”动作监督信号, 预览版202112 元的权重参数{? , ? , … , ? }。Frank Rosenblatt 随后基于“Mark 1 感知机”硬件实现感知 机模型,如图 1.6、图 1.7 所示,输入为 400 个单元的图像传感器,输出为 8 个节点端 子,它可以成功识别一些英文字母。一般认为 1943 年~1969 年为人工智能发展的第一次兴 盛期。 ? ? ? ? ? ? 误差0 码力 | 439 页 | 29.91 MB | 1 年前3
全连接神经网络实战. pytorch 版存储样本以及它们的标签等信息,Dataset 可以使用预加载的数据集(例如 mnist), 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 batch_size 数量的样本导出。 注意,前面已经导入过的 python 包我们就不再重复导入了。 from torch . u t i l s . data import Dataset from datasets 是 torchvision 的对象,它返回的数据就是 pytorch 的 Dataset 类型的。 参数 transf orm 表示导出的数据应该怎么转换,我们还可以使用参数 target_transf orm 表 示导出的数据标签应该怎么转换。 注意显示时我们调用了 squeeze() 函数,这是因为原来的数据维度是 (1,28,28) 的三维数据, 使用.squeeze() # 优 化 器 为 随 机 梯 度 下 降 optimizer = torch . optim .SGD( model . parameters () , l r=learning_rate ) 现在我们先构思一下训练的主体程序,该程序训练 10 轮,并且每轮会训练一次,然后测试一 次准确率。训练函数的输入是训练数据、神经网络体、损失函数计算体以及优化器;测试函数不 需要优化器: epochs0 码力 | 29 页 | 1.40 MB | 1 年前3
机器学习课程-温州大学-03深度学习-PyTorch入门01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 3 1.Tensors张量 01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 4 1.Tensors张量的概念 Tensor实际上就是一个多维数组(multidimensional array) *:element-wise乘法 16 2. Autograd自动求导 01 Tensors张量 02 Autograd自动求导 03 神经网络 04 训练一个分类器 17 PyTorch 1.x的自动微分机制 构 建 计 算 图 创 建 设 置 张 量 (tensor) 设 置 t e n s o r的 requires_ g r a d 的 属 在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经 网络的优化提供了关键数据。 但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求 人们解出复杂、高维的方程是不现实的。 这就是自动求导出现的原因,当前最流行的深度学习框架如PyTorch 、Tensorflow等都提供了自动微分的支持,让人们只需要很少的工作 就能神奇般地自动计算出复杂函数的梯度。 PyTorch之自动梯度 200 码力 | 40 页 | 1.64 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇torchtext、针对计算机视觉的 torchvision、针对语音处理 的 torchaudio,这些库支持快速模型训练与演示应用,可以 帮助开发者快速搭建原型演示。此外在移动端支持、模型部署 的压缩、量化、服务器端云化部署、推理端 SDK 支持等方面 Pytorch 也在不断的演化改进。 在操作系统与 SDK 支持方面,Pytorch 从最初的单纯支持 Python 语言到如今支持 Python/C++/Java pip 方式直接 安装。 1.1.2 Pytorch 的模块与功能 Pytorch 当前支持绝大数的深度学习常见的算子操作,基于相 关的功能模块可以快速整合数据、构建与设计模型、实现模型 训练、导出与部署等操作。这些功能的相关模块主要有如下: 1)torch.nn 包,里面主要包含构建卷积神经网络的各种算子 操作,主要包括卷积操作(Conv2d、Conv1d、Conv3d)激 活函数、序贯模型 aset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 相关类。 3)torch 开头的一些包与功能,主要包括支持模型导出功能 的 torch.onnx 模块、优化器 torch.optim 模块、支持 GPU 训 练 torch.cuda 模块,这些都是会经常用的。 4)此外本书当中还会重点关注的 torchvison 库中的一些常见0 码力 | 13 页 | 5.99 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . 362 9.6 编码器‐解码器架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 9.6.1 编码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 9.6.2 解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 9.6.3 合并编码器和解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 9.7.1 编码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 9.7.2 解码器 . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
pytorch 入门笔记-03- 神经网络Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn.Parameter:一种变量,当把它赋值给一个Module 时,被自动 地注册为一个参数。 ● autograd.Function:实现一个自动求导操作的前向和反向定义,每个变量操作至少创建一个函数 m、RMS ROP 等,PyTorch 中构建了一个包 torch.optim 实现了所有的这些规则。 使用它们非常简单: import torch.optim as optim # 创建优化器 optimizer = optim.SGD(net.parameters(), lr=0.01) # 迭代训练 optimizer.zero_grad() # 梯度清零 output = net(input)0 码力 | 7 页 | 370.53 KB | 1 年前3
共 46 条
- 1
- 2
- 3
- 4
- 5













