人工智能发展史Perceptron http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Perceptron:1958 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=p df Perceptron http://www Extend to cope with multi categories https://youtu.be/aygSMgK3BEM Perceptrons’ Limitation: 1969 http://science.sciencemag.org/content/165/3895/780 Is it Winter? http://www.iro.umontreal.ca/~vincentp/ Multi-Layer Perceptron is coming ▪ New Issue: How to train MLP ▪ Chain Rules => Backpropagation http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Backpropagation: First Spark0 码力 | 54 页 | 3.87 MB | 1 年前3
AI大模型千问 qwen 中文文档transformers -U 1.1.2 Conda 安装 conda install conda-forge::transformers 1.1.3 从源码安装 pip install git+https://github.com/huggingface/transformers 我们建议您使用 Python3.8 及以上版本和 Pytorch 2.0 及以上版本。 3 Qwen 1.2 快速开始 openai.api_server --model Qwen/Qwen1.5-7B-Chat 然后,您可以使用 create chat interface 来与 Qwen 进行交流: curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1 OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key,0 码力 | 56 页 | 835.78 KB | 1 年前3
动手学深度学习 v2.0多个输出,并为论坛提供讨论。 虽然我们的体系尚不完善,但这些选择在相互冲突的问题之间提供了一个很好的妥协。我们相信,这可能是 第一本使用这种集成工作流程出版的书。 1 http://distill.pub 2 http://discuss.d2l.ai 2 目录 在实践中学习 许多教科书教授一系列的主题,每一个都非常详细。例如,Chris Bishop的优秀教科书 (Bishop, 2006) Surbhi Vijayvargeeya, Muhyun Kim, dennismalmgren, adursun, Anirudh Dagar, liqingnz, 3 http://learnpython.org/ 4 https://discuss.d2l.ai/ 6 目录 Pedro Larroy, lgov, ati‐ozgur, Jun Wu, Matthias Blume, Lin 5 https://discuss.d2l.ai/ 目录 7 练习 1. 在本书discuss.d2l.ai6的论坛上注册帐户。 2. 在计算机上安装Python。 3. 沿着本节底部的链接进入论坛,在那里可以寻求帮助、讨论这本书,并通过与作者和社区接触来找到问 题的答案。 Discussions7 6 https://discuss.d2l.ai/ 7 https://discuss0 码力 | 797 页 | 29.45 MB | 1 年前3
《TensorFlow 2项目进阶实战》5-商品识别篇:使用ResNet识别你的货架商品SKU 抠图与分类标注流程 … 检测框 -> SKU 小图 … SKU 小图 -> 手动分类 “Hello TensorFlow” Try it! 应⽤用:分类训练集与验证集划分 https://www.pinlandata.com/rp2k_dataset Categoried Stats # SKUs # Train images # Test images # Total Images 扩展:图像分类常用数据集综述 https://github.com/zalandoresearch/fashion-mnist http://yann.lecun.com/exdb/mnist/ MNIST & Fashion-MNIST https://www.cs.utoronto.ca/~kriz/cifar.html CIFAR-10 & CIFAR-100 http://image-net http://image-net.org/ ImageNet http://www.vision.caltech.edu/Image_Datasets/Caltech256/ Caltech 101 & Caltech 256 https://www.pinlandata.com/rp2k_dataset 扩展:图像分类更多应⽤用场景介绍 图像分类应用:牛脸识别与畜牧险维保 图像分类应用:户型图识别(空间、家具)0 码力 | 58 页 | 23.92 MB | 1 年前3
深度学习与PyTorch入门实战 - 56. 深度学习:GAN主讲人:龙良曲 https://blog.openai.com/generative-models/ Our Goal: ?(?) https://www.mathworks.com/help/stats/simulate-data-from-a-gaussian-mixture- model.html What does ? ? looks like? http://www.pymvpa Discriminator https://towardsdatascience.com/generative-adversarial-networks-explained- 34472718707a How to train? https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html Done! https://medium realistic samples https://drive.google.com/drive/folders/1lWC6XEPD0LT5KUnPXeve_kWeY-FxH002 Having Fun ▪ https://reiinakano.github.io/gan-playground/ ▪ https://affinelayer.com/pixsrv/ ▪ https://www.youtube0 码力 | 42 页 | 5.36 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言递归神经网络 (RNN) 卷积神经网络(CNN) 25 深度学习的硬件 26 • TPU (Tensor Processing Units) Google Cloud TPU. https://cloud.google.com/tpu NVIDIA V100 TPU v2 TPU v3 Hardware Architecture NVIDIA Volta GPU Google 的环境的安装 ⚫Anaconda ⚫Jupyter notebook ⚫Pycharm 详细教程:https://zhuanlan.zhihu.com/p/59027692 3. 机器学习的背景知识-Python基础 52 Python 的环境的安装 ⚫Anaconda https://www.anaconda.com/distribution/ 通常选64位 可以用默认安装,右图两个选择框都勾上 jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:8088 ,默认跳转到 http://localhost:8088/tree 54 ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能,0 码力 | 80 页 | 5.38 MB | 1 年前3
深度学习与PyTorch入门实战 - 37. 什么是卷积256, 10] ▪ 390K parameters ▪ 1.6MB memory ▪ 80386 http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf Receptive Field https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural- Weight sharing ▪ ~60k parameters ▪ 6 Layers http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf Convolution Operation Rethink Linear layer http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures Convolution? Convolution https://www.superdatascience.com/convolutional-neural-networks-cnn-step-1- convolution-operation/ Convolution Convolution CNN on feature maps https://ujjwalkarn.me/2016/08/0 码力 | 18 页 | 1.14 MB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别功能。 核心图像库旨在快速访问以几种基本像素格式存储的数据, 它应该为一般的图像处理工 具提供坚实的基础。 https://github.com/python-pillow/Pillow captcha Catpcha 是一个生成图像和音频验证码的开源工具库。 https://github.com/lepture/captcha from captcha.image import ImageCaptcha GraphViz:将图形渲染为PDF,PNG,SVG等格式文件,需独立安装。 https://github.com/lepture/captcha flask flask 是一个基于 Werkzeug 和 jinja2 开发的 Python Web 应用程序框架,遵从 BSD 开源协 议。它以一种简约的方式实现了框架核心,又保留了扩展性。 https://github.com/pallets/flask 生成验证码数据集 Recognition)之类的计算机程 序自动识别出图片上的文数字而失去效果。由于这个测试是由计算机来考人类,而不是 标准图灵测试中那样由人类来考计算机,人们有时称CAPTCHA是一种反向图灵测试。 https://zh.wikipedia.org/wiki/captcha 验证码(CAPTCHA)破解 一些曾经或者正在使用中的验证码系统已被破解。 这包括Yahoo验证码的一个早期版本 EZ-Gi0 码力 | 51 页 | 2.73 MB | 1 年前3
Keras: 基于 Python 的深度学习库by Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 locally when learning the Keras Deep Learning Library. For the latest PDF version, please visit https://github.com/wanzhenchn/keras-docs-zh. Thanks for the Chinese translation work done by keras-team 虚拟环境, 你可以避免使用 sudo: pip install keras • 或者:使用 Github 源码安装 Keras: 首先,使用 git 来克隆 Keras: git clone https://github.com/keras-team/keras.git 然后,cd 到 Keras 目录并且运行安装命令: cd keras sudo python setup.py install0 码力 | 257 页 | 1.19 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言的环境的安装 ⚫Anaconda ⚫Jupyter notebook ⚫Pycharm 详细教程:https://zhuanlan.zhihu.com/p/59027692 3. 机器学习的背景知识-Python基础 51 Python 的环境的安装 ⚫Anaconda https://www.anaconda.com/distribution/ 通常选3.7版本,64位 可以用默认安装,右图两个选择框都勾上 jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:8088 ,默认跳转到 http://localhost:8088/tree 53 ⚫Pycharm https://www.jetbrains.com/pycharm/ Pycharm 提供 免费的社区版 与 付费的专业版。专业版额外增加了一些功能, 2D绘图库,它以各种硬拷贝格 式和跨平台的交互式环境生成 出版质量级别的图形 。 通过 Matplotlib,开发者可以 仅需要几行代码,便可以生成 绘图,直方图,功率谱,条形 图,错误图,散点图等。 https://matplotlib.org/gallery/index.html 70 Python模块-Matplotlib 图形的各元素名称如下: 绘图框 是图形的最高容器,所 有图形必须放置在绘图框中0 码力 | 78 页 | 3.69 MB | 1 年前3
共 101 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11













