积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部英语(9)中文(简体)(3)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.051 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 1: Overview

    September 6, 2023 14 / 57 Source of Training Data Provided random examples outside of the learner’s control. Negative examples available or only positive? Good training examples selected by a “benevolent” Classification and Regression Classification: finding decision boundaries Regression: fitting a curve/plane to data x t 0 1 −1 0 1 Feng Li (SDU) Overview September 6, 2023 25 / 57 Supervised Classification watching a given video on YouTube Predict the location in 3D space of a robot arm end effector, given control signals (torques) sent to its various motors Predict the amount of prostate specific antigen (PSA)
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    + · · · + ✓1x1 + ✓0 Geometrically, when n = 1, h✓(x) is actually a line in a 2D plane, while h✓(x) represents a plane in a 3D space when n = 2. Generally, when n � 3, h✓(x) defines a so-called “hyperplane”
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    X = x; θ) = 1/(1 + exp(−θTx)) The “score” θTx is also a measure of distance of x from the hyper- plane (the score is positive for pos. examples, and negative for neg. examples) High positive score: High
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    The relationship between x and y is modeled as a linear function. The linear function in the 2D plane is a straight line. Hypothesis: hθ(x) = θ0 + θ1x (where θ0 and θ1 are parameters) Feng Li (SDU)
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ωT x + b = 0 (1) where ω ∈ Rn is the outward pointing normal vector, and b is the
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    → R for ∀i = 1, · · · , m ∇f |q is “perpendicular” to all “constraint surface” ∇f |q is in the plane determined by ∇gi |q (i = 1, · · · , m) Feng Li (SDU) GDA, NB and EM September 27, 2023 60 / 122
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    we draw one such decision boundary. If we had more than two features we would need to draw a hyper-plane to separate the points in more than two dimensions. 3 Linear Separability - https://en.wikipedia
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    (Cer et al., 2017)。我们的目标是预测这些分 数。来自语义文本相似性基准数据集的样本包括(句子1,句子2,相似性得分): • “A plane is taking off.”(“一架飞机正在起飞。”),“An air plane is taking off.”(“一架飞机正在起 飞。”),5.000分; • “A woman is eating something.”(“一个女人在吃东西。”),“A
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    maximizes the following objective: where is a weight factor defined as, such that and variables control the reward penalty for latency violation. In addition to the multiobjective optimization, Mnasnet
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
LectureOverviewNotesonLinearRegressionLogisticSupportVectorMachineGaussianDiscriminantAnalysisNaiveBayesEfficientDeepLearningBookEDLChapterArchitectures动手深度学习v2AI模型千问qwen中文文档Automation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩