积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)机器学习(15)

语言

全部英语(9)中文(简体)(6)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.093 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    Release 23.07 supports CUDA compute capability 6.0 and later. This corresponds to GPUs in the NVIDIA Pascal, NVIDIA Volta™, NVIDIA Turing™, NVIDIA Ampere architecture, and NVIDIA Hopper™ architecture families the 23.06 release, the NVIDIA Optimized Deep Learning Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA Release 23.06 supports CUDA compute capability 6.0 and later. This corresponds to GPUs in the NVIDIA Pascal, NVIDIA Volta™, NVIDIA Turing™, NVIDIA Ampere architecture, and NVIDIA Hopper™ architecture families
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep learning efficiency. Now, we will form of Jupyter notebooks. You can run the notebooks in Google’s Colab environment which provides free access to CPU, GPU, and TPU resources. You can also run this locally on your machine using the Jupyter 0 0 0 0 0 0]. The optimizer is the standard Adam8 optimizer with the default learning rate. Feel free to tweak the learning rate and measure its impact on the training process. The metric function is
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    and deploying large deep learning models is costly. While training is a one-time cost (or could be free if one is using a pre-trained model), deploying and letting inference run for over a long period of deployments, as well as the more powerful Xavier and TX variants, which are based on the NVidia Volta and Pascal GPU architectures. As expected, the difference within the Jetson family is primarily the type and
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品

    Scale Visual Recognition Challenge ILSVRC • The PASCAL Visual Object Classes (VOC) Challenge Pascal VOC • Microsoft Common Objects in Context MS-COCO PASCAL VOC 数据集 4个大类:person, animal, vehicle, household
    0 码力 | 67 页 | 21.59 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    深度生成对抗网络 SACC2017 深度学习 训练框架 和 硬件选择 不同场景,不同框架 特性 GTX - 1080TI G7-P40 PCIe-V100 GPU核心 GPU微架构 Pascal Pascal Volta 核心代号 GP104 GP102 GV100 Tensor Cores NA NA 640 CUDA核数量 3456 3840 5120 处理器制程 - 16nm
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    13.9.1 图像分割和实例分割 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 13.9.2 Pascal VOC2012 语义分割数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 13.10 转置卷积 . . . . 像素属于的两条狗中的哪一条。 178 https://discuss.d2l.ai/t/3207 13.9. 语义分割和数据集 605 13.9.2 Pascal VOC2012 语义分割数据集 最重要的语义分割数据集之一是Pascal VOC2012179。下面我们深入了解一下这个数据集。 %matplotlib inline import os import torch import png'), mode)) return features, labels (continues on next page) 179 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ 606 13. 计算机视觉 (continued from previous page) train_features, train_labels = read_voc_images(voc_dir
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    • After Miniconda is installed: conda install pytorch -c pytorch Writing code • Up to you; feel free to use emacs, vim, PyCharm, etc. if you want. • Our recommendations: • Install: conda/pip3 install com/pytorch/index.htm • https://github.com/hunkim/PyTorchZeroToAll • Free GPU access for short time: • Google Colab provides free Tesla K80 GPU of about 12GB. You can run the session in an interactive
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    explain how they work. In the following section we will explain them through a toy example, but feel free to jump ahead if you are familiar with the motivation behind them. 1 Dimensionality reduction is sorts them in the order of their frequencies, and assigns them an index. This process of mapping free form inputs to integer sequences is known as vectorization, as introduced in the Word2Vec subsection still take up 47-71% of the number of parameters of large NLP models15. In this situation, embedding-free approaches like pQRNN16 are a viable alternative. pQRNN uses the projection operation which maps a
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 53. 情感分类实战

    情感分类实战 主讲人:龙良曲 Google CoLab ▪ Continuous 12 hours ▪ free K80 for GPU ▪ no need to cross GFW Load Dataset Network Load word embedding Train Test 下一课时 GAN Thank You.
    0 码力 | 11 页 | 999.73 KB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    been extensively tested with Matlab, but they should also work in Octave, which has been called a “free version of Matlab”. If you are using Octave, be sure to install the Image package as well (available
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterCompressionTechniquesIntroductionTensorFlow快速入门实战商品检测使用RetinaNet瞄准货架国富深度学习图像审核应用动手v2TutorialArchitectures53情感分类ExperimentLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩