积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)机器学习(5)

语言

全部中文(简体)(3)英语(2)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 5 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    ‣ Deep learning framework containers 19.11 and later include experimental support for Singularity v3.0. PyTorch Release 23.07 PyTorch RN-08516-001_v23.07 | 7 ‣ Starting with the 22.11 PyTorch NGC ‣ Deep learning framework containers 19.11 and later include experimental support for Singularity v3.0. ‣ Starting with the 22.11 PyTorch NGC container, miniforge is removed and all Python packages are ‣ Deep learning framework containers 19.11 and later include experimental support for Singularity v3.0. ‣ Starting in 21.06, PyProf will no longer be included in the NVIDIA PyTorch container. To profile
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    定的迭代次数或者收敛为止。 40 4.LightGBM 样本序号 样本的特征取值 样本的一阶导 样本的二阶导 ? 1 2 3 4 5 6 7 8 ?? 0.1 2.1 2.5 3.0 3.0 4.0 4.5 5.0 ?? 0.01 0.03 0.06 0.05 0.04 0.7 0.6 0.07 ℎ? 0.2 0.04 0.05 0.02 0.08 0.02 0.03 0.03 0.1 2.1 2.5 3.0 3.0 4.0 4.5 5.0 ?? 0.01 0.03 0.06 0.05 0.04 0.7 0.6 0.07 ℎ? 0.2 0.04 0.05 0.02 0.08 0.02 0.03 0.03 样本序号 样本的特征取值 样本的一阶导 样本的二阶导 ? 1 2 3 4 5 6 7 8 ?? 0.1 2.1 2.5 3.0 3.0 4.0 4.5 5.0
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    page) 48 2. 预备知识 (continued from previous page) print(inputs) NumRooms Alley 0 3.0 Pave 1 2.0 NaN 2 4.0 NaN 3 3.0 NaN 对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。由于“巷子类型”(“Alley”)列只接受两 种类型的类别值“Pave”和“NaN” get_dummies(inputs, dummy_na=True) print(inputs) NumRooms Alley_Pave Alley_nan 0 3.0 1 0 1 2.0 0 1 2 4.0 0 1 3 3.0 0 1 2.2.3 转换为张量格式 现在inputs和outputs中的所有条目都是数值类型,它们可以转换为张量格式。当数据采用张量格式后,可以 通过在 2 为0或1的数字。 标量由只有一个元素的张量表示。下面的代码将实例化两个标量,并执行一些熟悉的算术运算,即加法、乘 法、除法和指数。 import torch x = torch.tensor(3.0) y = torch.tensor(2.0) x + y, x * y, x / y, x**y 37 https://discuss.d2l.ai/t/1750 50 2. 预备知识 (tensor(5
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    given classes. The cat and dog images are sourced from wikipedia Cat and Dog pages under CC BY-SA 3.0 license. They are authored by wikipedia users Joaquim Alves Gaspar and Losch respectively. The pigeon function in NumPy. import numpy as np # A dummy logits tensor. logits_tensor = np.array([1.0, 2.0, 3.0]) # Compute e(logits) exp_tensor = np.exp(logits_tensor) # Compute Softmax probabilities_tensor # the larger the network. Keep a bound on the width though. w = min(max(width_multiplier, 0.05), 3.0) inputs = keras.Input(shape=input_shape) x = inputs # Create a regularizer to be used. reg = keras
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    智能调度系统中 的人工智能 三. 外卖订单智能调度系统发展历程 6 人工派单模式 • 调度员根据订单地址和骑士 位置来进行订单分配 • 人力调度派单峰值为每人 800单/天 调度 系统 3.0 云端分组派单模式 A 组 B 组 • 系统综合考虑各因素进行 订单分组,然后再指派给 合适的骑士 订单云端分组 整体最优分配 调度 系统 4.0 深度学习智能模式 • 出餐时间估算更准,缩短
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
共 5 条
  • 1
前往
页
相关搜索词
PyTorchReleaseNotes机器学习课程温州大学08集成动手深度v2EfficientDeepLearningBookEDLChapterTechniques经典算法人工智能人工智能外卖物流调度应用
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩