积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(4)机器学习(4)

语言

全部英语(2)中文(简体)(2)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 4 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    million的网页、大小40GB的文本。 图:GPT-2通过调整原模型和采用多任务方式来让AI更贴近“通才” 水平 GPT的发展 37 资料来源:《 Language Models are Few-Shot Learners》论文 • 预训练加微调范式中,可能在这种范式下实现的 泛化可能很差,因为该模型过于特定于训练分布, 并且在其之外无法很好地泛化。 • 微调模型在特定基准上的性能,即使名义上是人 现了强大性能 ✓ GPT-3是一个具有1750亿个参数的自回归语言模型,比之前的任何非稀疏语言模型多10倍。对于所有任务(在few-shot设置下测试其 性能),GPT-3都是在没有任何梯度更新或微调的情况下应用的,仅通过与模型的文本交互来指定任务和few-shot演示。 ✓ GPT-3在许多NLP数据集上都有很强的性能(包括翻译、问题解答和完形填空任务),以及一些需要动态推理或领域适应的任务(如解 GPT-3可以生成新闻文章样本(已很难将其与人类撰写的文章区分开来)。 图:GPT-3相关研究显示,few-shot(少量样本)的综 合表现是在无监督模式下最优的 图:GPT-3的模型参数在GPT-2的基础上增加110多倍 资料来源:《 Language Models are Few-Shot Learners》 GPT的发展 39 资料来源:《Training language models
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    official Tensorflow Hub repository8. Similarly models like GPT-3, T5, etc. have the capability to be few-shot learners. This means that they can be shown a few example inputs and outputs to solve a new task perform sentiment detection by showing it a few examples of the task. Figure 6-7: An example of few-shot learning with a large language model. One of the prominent deployment of such models is the GitHub’s achieve higher quality models with scant labeled data. In fact very large models like GPT-3 are few-shot learners, in that they can be shown a couple of examples of the task to be solved, and they can
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    this growth sustainable with efficient deep learning. 5 Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020). 4 Devlin, Jacob, et al. "Bert: Pre-training
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    机器人(Robotics) 在真实环境中,机器人的控制也取得了一定的进展。如 UC Berkeley 实验室在机器人领域的 Imitation Learning、Meta Learning、Few-shot Learning 等方向上取得 了不少进展。美国波士顿动力公司在机器人应用中取得喜人的成就,其制造的机器人在复 杂地形行走、多智能体协作等任务上表现良好(图 1.19)。 自动驾驶(Autonomous
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
机器学习课程温州大学12深度自然语言自然语言处理嵌入EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewIntroductionPyTorch深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩