积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部英语(11)中文(简体)(10)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Compute the number of elements to zero. num_elements_to_zero = int(w_1d.shape[0] * sparsity_rate) # Set the respective indices to zero. w_1d[w_1d_sorted_indices[:num_elements_to_zero]] = 0.0 w = np centroids as well as we can, so that they closely mimic the original distribution of the tensor’s elements. For a moment, let’s assume that the centroids we obtain are optimal, i.e. the reconstruction error in the codebook, which will only take up bits. For a tensor with elements, the cost would be bytes. Originally, storing all the elements would have cost bytes. Therefore, the compression ratio turns out
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    vocabulary[:10] ['', '[UNK]', 'the', 'in', 'of', 'is', 'a', 'and', 'was', 'by'] Notice that the first two elements are an empty string (a reserved token for padding) and a 'UNK' token (a token reserved for words of the hash function % vocab_size is an index in [0, vocab_size - 1] and is used to refer to the elements in the embedding table. In the figure, ‘bar’ and ‘hello’ map to the same slot in the embedding previous timestep. Another drawback of a sequential architecture is the loss of context between the elements that are far apart in the sequence. In other words, a sequential architecture has inherent limitations
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    Brand Guidelines PyTorch Symbol Clearspace While our system encourages a flexible use of elements, it’s important to present the symbol in its entirety maintaining legibility and clarity. maintain a clear area surrounding the wordmark. This insulates our wordmark from distracting visual elements such as copy, illustrations or photography. This spacing is determined by the measurements hex code equivalent. When printing, please use CMYK or the listed Pantone code. For UI button elements, please reference “Color Variations for UI Buttons” to apply the color properly. 9 Brand Guidelines
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    dataset, a few simple pretext tasks can be to predict the last element (future) from the previous elements (past), or the other way around. Again to re-emphasize we are just pretending that the data is missing play around with the arrangement of the input, and make the model predict the right order of the elements of . The next question is where do we get the data for creating these tasks though? Since for each
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Note that as increases, the relative differences between the various elements of decreases. This happens because if all elements are divided by the same constant, the softmax function would lead to
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03机器学习-逻辑回归

    org/course/ml [3] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. [4] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition
    0 码力 | 23 页 | 1.20 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-06机器学习-KNN算法

    classification[J]. IEEE Trans.inf.theory, 1953, 13(1):21-27. [5] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [6] CHRISTOPHER M. BISHOP. Pattern Recognition
    0 码力 | 26 页 | 1.60 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-09机器学习-支持向量机

    org/course/ml [3] 李航. 统计学习方法[M]. 北京: 清华大学出版社,2019. [4] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition
    0 码力 | 29 页 | 1.51 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-04机器学习-朴素贝叶斯

    Learning[M]. New York: McGraw-Hill Companies,Inc,1997. [2] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [3] CHRISTOPHER M. BISHOP. Pattern Recognition
    0 码力 | 31 页 | 1.13 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05机器学习-机器学习实践

    Learning[M]. New York: McGraw-Hill Companies,Inc,1997. [4] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition
    0 码力 | 33 页 | 2.14 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesArchitecturesPyTorchBrandGuidelinesTechnicalReview机器学习课程温州大学03逻辑回归06KNN算法09支持向量04朴素贝叶贝叶斯05实践
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩