 动手学深度学习 v2.0Ahuja, Prasanth Buddareddygari, brianhendee, mani2106, mtn, lkevinzc, caojilin, Lak‐ shya, Fiete Lüer, Surbhi Vijayvargeeya, Muhyun Kim, dennismalmgren, adursun, Anirudh Dagar, liqingnz, 3 http://learnpython 'Gumbel', 'HalfCauchy', 'HalfNormal', (continues on next page) 43 https://en.wikipedia.org/wiki/Venn_diagram 44 https://en.wikipedia.org/wiki/Markov_chain 45 https://discuss.d2l.ai/t/1762 2.7. 查阅文档 81 (continued raw_token_freqs将词映射到数据集中的频 率(出现次数)。注意,特殊符号'_'被附加到每个词的尾部,以便我们可以容易地从输出符号序列(例如, “a_all er_man”)恢复单词序列(例如,“a_all er_man”)。由于我们仅从单个字符和特殊符号的词开始合并处理, 所以在每个词(词典token_freqs的键)内的每对连续字符之间插入空格。换句话说,空格是词中符号之间的0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0Ahuja, Prasanth Buddareddygari, brianhendee, mani2106, mtn, lkevinzc, caojilin, Lak‐ shya, Fiete Lüer, Surbhi Vijayvargeeya, Muhyun Kim, dennismalmgren, adursun, Anirudh Dagar, liqingnz, 3 http://learnpython 'Gumbel', 'HalfCauchy', 'HalfNormal', (continues on next page) 43 https://en.wikipedia.org/wiki/Venn_diagram 44 https://en.wikipedia.org/wiki/Markov_chain 45 https://discuss.d2l.ai/t/1762 2.7. 查阅文档 81 (continued raw_token_freqs将词映射到数据集中的频 率(出现次数)。注意,特殊符号'_'被附加到每个词的尾部,以便我们可以容易地从输出符号序列(例如, “a_all er_man”)恢复单词序列(例如,“a_all er_man”)。由于我们仅从单个字符和特殊符号的词开始合并处理, 所以在每个词(词典token_freqs的键)内的每对连续字符之间插入空格。换句话说,空格是词中符号之间的0 码力 | 797 页 | 29.45 MB | 1 年前3
 阿里云上深度学习建模实践-程孟力feature M HSA Fusion M VM VTM M TM Tran sform er decoder Tran sform er decoder Tran sform er decoder Tran sform er decoder Tran sform er decoder 解决方案: 多模态预训练 Vit based 下游任务:  视频分类0 码力 | 40 页 | 8.51 MB | 1 年前3 阿里云上深度学习建模实践-程孟力feature M HSA Fusion M VM VTM M TM Tran sform er decoder Tran sform er decoder Tran sform er decoder Tran sform er decoder Tran sform er decoder 解决方案: 多模态预训练 Vit based 下游任务:  视频分类0 码力 | 40 页 | 8.51 MB | 1 年前3
 Lecture Notes on Linear Regression"), i.e. krf(x)k2  " where k · k2 is `2 norm, such that the values of the objective function di↵er very slightly in successive iterations. Another convergence criterion is to set a fixed value for the0 码力 | 6 页 | 455.98 KB | 1 年前3 Lecture Notes on Linear Regression"), i.e. krf(x)k2  " where k · k2 is `2 norm, such that the values of the objective function di↵er very slightly in successive iterations. Another convergence criterion is to set a fixed value for the0 码力 | 6 页 | 455.98 KB | 1 年前3
 keras tutorialalgorithm (CNN, RNN, etc.,) can be represented in a simple and efficient manner. The following diagram depicts the relationship between model, layer and core modules: Let us see the overview of Keras0 码力 | 98 页 | 1.57 MB | 1 年前3 keras tutorialalgorithm (CNN, RNN, etc.,) can be represented in a simple and efficient manner. The following diagram depicts the relationship between model, layer and core modules: Let us see the overview of Keras0 码力 | 98 页 | 1.57 MB | 1 年前3
共 4 条
- 1













