keras tutorialboth CPU and GPU. Highly scalability of computation. Benefits Keras is highly powerful and dynamic framework and comes up with the following advantages: Larger community support. Easy list of initializers function. We can learn it in details in Keras layer chapter. during model creation phase of machine learning. Regularizers: Provides a list of regularizers function. We can0 码力 | 98 页 | 1.57 MB | 1 年前3
PyTorch Tutorialextension to GPUs. • Computational graphs − PyTorch provides an excellent platform which offers dynamic computational graphs. Thus a user can change them during runtime. • It includes many layers as Torch research.google.com/ Misc • Dynamic VS Static Computation Graph a b x_train_tensor Epoch 1 Misc • Dynamic VS Static Computation Graph a b yhat x_train_tensor Misc • Dynamic VS Static Computation Graph y_train_tensor Misc • Dynamic VS Static Computation Graph a b x_train_tensor Epoch 2 Misc • Dynamic VS Static Computation Graph a b yhat x_train_tensor Misc • Dynamic VS Static Computation Graph0 码力 | 38 页 | 4.09 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言2014 • word2vec • XLNet • RoBERTa • GPT-2 • T5 • GloV e Static Representation Dynamic Representation Deep Dynamic Representation 深度学习入门-NLP 21 深度学习入门-NLP 2022chatGPT 22 2. 神经网络的基础 010 码力 | 80 页 | 5.38 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesfinal output of the model is the word itself. Let’s discuss each step in detail. Step 1: Vocabulary Creation In this step, we create a vocabulary of the top words10 (ordered by frequency) from the given scratch. Let’s review those four steps, and see how they apply in our case here. Step 1: Vocabulary Creation In this step, we will use a TextVectorization layer from Tensorflow to create a vocabulary of the0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesthe earlier section. Active Research Some recent works like Sparse Evolutionary Training5 (SET), Dynamic Sparse Reparametrization6 (DSR) and Sparse Networks from Scratch7 (SNFS) have introduced an additional Mostafa, Hesham, and Xin Wang. "Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization." International Conference on Machine Learning. PMLR, 2019. 5 Mocanu,0 码力 | 34 页 | 3.18 MB | 1 年前3
星际争霸与人工智能networks Memory-Augmented Neural Networks Source: Hybrid computing using a neural network with dynamic external memory Work Fun Play Hard0 码力 | 24 页 | 2.54 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱解空间 未来⽅向—现有推荐架构的问题,算法⼯程协同的解法 � 更基础的复杂模型,场景的快速适应 � 多场景建模 � 端云⼀体的协同 推荐技术 [KDD2020] DCAF: A Dynamic Computation Allocation Framework for Online Serving System � 推荐全链路⾃适应 � 统⼀建模,根据请求量削峰填⾕,资源利⽤最⼤化0 码力 | 22 页 | 6.76 MB | 1 年前3
阿里云上深度学习建模实践-程孟力模型并行(Whale) FP16 / Int8 模型剪枝 Op融合(Fusion Stitch) MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads EmbeddingVariable [No Hash Conflict] 特征准入/淘汰 Adaptive0 码力 | 40 页 | 8.51 MB | 1 年前3
深度学习下的图像视频处理技术-沈小勇et al, 2013], etc. Previous Work 77 Data from [Whyte et al, 2010] Different Blur Assumptions Dynamic: [Kim et al, 2013], [Kim et al, 2014], [Nah et al, 2017], etc. Previous Work 78 Data from [Kim0 码力 | 121 页 | 37.75 MB | 1 年前3
PyTorch Release Notesperformance regression of up to 17% for workloads using dynamic input shapes. ‣ Tacotron2 inference performance regression of up to 15% for workloads using dynamic input shapes. Security CVEs ‣ CVE-2022-451980 码力 | 365 页 | 2.94 MB | 1 年前3
共 11 条
- 1
- 2













