积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部中文(简体)(6)英语(5)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    both CPU and GPU.  Highly scalability of computation. Benefits Keras is highly powerful and dynamic framework and comes up with the following advantages:  Larger community support.  Easy list of initializers function. We can learn it in details in Keras layer chapter. during model creation phase of machine learning.  Regularizers: Provides a list of regularizers function. We can
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    extension to GPUs. • Computational graphs − PyTorch provides an excellent platform which offers dynamic computational graphs. Thus a user can change them during runtime. • It includes many layers as Torch research.google.com/ Misc • Dynamic VS Static Computation Graph a b x_train_tensor Epoch 1 Misc • Dynamic VS Static Computation Graph a b yhat x_train_tensor Misc • Dynamic VS Static Computation Graph y_train_tensor Misc • Dynamic VS Static Computation Graph a b x_train_tensor Epoch 2 Misc • Dynamic VS Static Computation Graph a b yhat x_train_tensor Misc • Dynamic VS Static Computation Graph
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    2014 • word2vec • XLNet • RoBERTa • GPT-2 • T5 • GloV e Static Representation Dynamic Representation Deep Dynamic Representation 深度学习入门-NLP 21 深度学习入门-NLP 2022chatGPT 22 2. 神经网络的基础 01
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    final output of the model is the word itself. Let’s discuss each step in detail. Step 1: Vocabulary Creation In this step, we create a vocabulary of the top words10 (ordered by frequency) from the given scratch. Let’s review those four steps, and see how they apply in our case here. Step 1: Vocabulary Creation In this step, we will use a TextVectorization layer from Tensorflow to create a vocabulary of the
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    the earlier section. Active Research Some recent works like Sparse Evolutionary Training5 (SET), Dynamic Sparse Reparametrization6 (DSR) and Sparse Networks from Scratch7 (SNFS) have introduced an additional Mostafa, Hesham, and Xin Wang. "Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization." International Conference on Machine Learning. PMLR, 2019. 5 Mocanu,
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    networks Memory-Augmented Neural Networks Source: Hybrid computing using a neural network with dynamic external memory Work Fun Play Hard
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    解空间 未来⽅向—现有推荐架构的问题,算法⼯程协同的解法 � 更基础的复杂模型,场景的快速适应 � 多场景建模 � 端云⼀体的协同 推荐技术 [KDD2020] DCAF: A Dynamic Computation Allocation Framework for Online Serving System � 推荐全链路⾃适应 � 统⼀建模,根据请求量削峰填⾕,资源利⽤最⼤化
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    模型并行(Whale)  FP16 / Int8  模型剪枝  Op融合(Fusion Stitch)  MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads EmbeddingVariable [No Hash Conflict] 特征准入/淘汰 Adaptive
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    et al, 2013], etc. Previous Work 77 Data from [Whyte et al, 2010] Different Blur Assumptions Dynamic: [Kim et al, 2013], [Kim et al, 2014], [Nah et al, 2017], etc. Previous Work 78 Data from [Kim
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    performance regression of up to 17% for workloads using dynamic input shapes. ‣ Tacotron2 inference performance regression of up to 15% for workloads using dynamic input shapes. Security CVEs ‣ CVE-2022-45198
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialPyTorchTutorial机器学习课程温州大学01深度引言EfficientDeepLearningBookEDLChapterArchitecturesAdvancedCompressionTechniques星际争霸星际争霸人工智能人工智能推荐模型基础特点大规规模大规模系统设计阿里云上建模实践程孟力图像视频处理技术沈小勇ReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩