积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部英语(8)中文(简体)(4)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    install numpy you could see the following response, Collecting numpy Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ install pandas We could see the following response: Collecting pandas Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ matplotlib We could see the following response: Collecting matplotlib Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    start a very simple case where n = 1. Download data1.zip, and extract the files (ex1x.dat and ex1y.dat) from the zip file. The files contain some example measurements of heights for various boys between the complicated case where each training data contains mul- tiple features. Download data1.zip, and extract the files (ex2x.dat and ex2y.dat) from the zip file. This is a training set of housing prices in Portland, Oregon
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    ./main -h 以了解它们。 1.4.3 生成你的 GGUF 文件 We introduce the method of creating and quantizing GGUF files in quantization/llama.cpp. You can refer to that document for more information. 1.4.4 PPL 评测 llama built-in tool␣ �→in Qwen-Agent bot = Assistant(llm=llm_cfg, system_message=system, function_list=tools, files=[os.path.abspath('doc.pdf')]) messages = [] while True: query = input('user question: ') messages knowledge base Q&A solution. 1.16.1 基础用法 The implementation process of this project includes loading files -> reading text -> segmenting text -> vectorizing text -> vectorizing questions -> matching the top
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    regular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the usual models, the figure also shows compressed size comparisons for mentioned, the sizes reported in the above snippet are computed after running gzip on the generated model files. The original model’s size after gzip was 1442.9 KB. Applying clustering on the original model, followed
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    logistic regression on a classification problem. 2 Data To begin, download data2.zip and extract the files from the zip file. For this exer- cise, suppose that a high school has a dataset representing 40 students
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    ⾏ 代码)� 扩展目标:� TensorFlow on Yarn设计 tensorflow-submit \� --app-name “tfdemo” \#作业名� --files tfTestDemo.py,dataDeal.py \ #依赖的本地⽂件� --tfcmd “python tfTestDemo.py --training_epochs=20” \ #TF运⾏指令�
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    Install the Python extension. • ???????????? Install the Remote Development extension. • Python files can be run like Jupyter notebooks by delimiting cells/sections with #%% • Debugging PyTorch code
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    Challenges – Scale of Financial Information Companies Market Types Speed To Market Problematic Files/Input Accuracy Modified from https://upload.wikimedia.org/wikipedia/commons/d/dc/UnderwoodKeybo
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    as tfds with tf.device('/job:localhost'): ds = tfds.load('ag_news_subset', try_gcs=True, shuffle_files=True, batch_size=-1) train_dataset = tf.data.Dataset.from_tensor_slices(ds['train']) test_dataset
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    pair of shoes or a couple of books to read. In the realm of the internet, videos, audios and data files are all compressed using a suitable format. It wasn’t a surprise that the idea of compression crept
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialExperimentLinearRegressionAI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesLogisticandNewtonMethodTensorFlowonYarn深度学习遇上数据PyTorchTutorialQCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野TechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩