积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(4)机器学习(4)

语言

全部中文(简体)(3)英语(1)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 4 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    required in CUDA graphs workloads between graph replays. ‣ The PyTorch container includes a version of Django with a known vulnerability that was discovered late in our QA process. See CVE-2021-31542 for details cuDNN 7.5.0 ‣ NVIDIA NCCL 2.4.6 (optimized for NVLink ™ ) ‣ APEX ‣ OpenMPI 3.1.3 ‣ TensorRT 5.1.2 ‣ DALI 0.8.1 Beta ‣ Tensor Core optimized examples: ‣ Mask R-CNN ‣ Tacotron 2 and WaveGlow v1 cuDNN 7.5.0 ‣ NVIDIA NCCL 2.4.3 (optimized for NVLink ™ ) ‣ APEX ‣ OpenMPI 3.1.3 ‣ TensorRT 5.1.2 ‣ DALI 0.7 Beta ‣ Tensor Core optimized examples: ‣ Tacotron 2 and WaveGlow v1.1 ‣ SSD300 v1.1
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤

    ORM 是什么 常见的 Python ORM • SQLAlchemy • Flask-SQLAlchemy • Django ORM • peewee 常见的 Python ORM • SQLAlchemy • Flask-SQLAlchemy • Django ORM • peewee Flask-SQLAlchemy 快速入门 Flask-SQLAlchemy 快速入门
    0 码力 | 54 页 | 6.30 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    5.1.1 自定义块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.1.2 顺序块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 iv 5 块的一个主要优点是它的多功能性。我们可以子类化块以创建层(如全连接层的类)、整个模型(如上面 的MLP类)或具有中等复杂度的各种组件。我们在接下来的章节中充分利用了这种多功能性,比如在处理卷积 神经网络时。 5.1.2 顺序块 现在我们可以更仔细地看看Sequential类是如何工作的,回想一下Sequential的设计是为了把其他模块串起 来。为了构建我们自己的简化的MySequential,我们只需要定义两个关键函数:
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    上述操作尝试合并 shape 为[35,4]和[35,8]的两个张量,由于两者 shape 不一致,无法完成 合并操作。 预览版202112 第 5 章 PyTorch 进阶 4 5.1.2 分割 合并操作的逆过程就是分割,即将一个张量拆分为多个张量。继续考虑上述成绩册的 例子,通过合并操作可得到整个学校的成绩册张量,shape 为[10,35,8],现在需要将数据在 班级维度上切割为
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
PyTorchReleaseNotesTensorFlow快速入门实战业务落地实现货架洞察Web动手深度学习v2深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩