《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewexcels in natural language generation and hence has been 8 BERT model on Tensorflow-Hub: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4 7 GPU pricing source: https://cloud.google.com/compute/gpus-pricing Check out the TF hub website for more preprocessors preprocessor = hub.KerasLayer( 'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3') # Create the final datasets that the BERT model will work interface as base BERT 'bert-small': "https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/2", 'bert-base': 'https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4', } In0 码力 | 31 页 | 4.03 MB | 1 年前3
PyTorch Release NotesCompute 2023.1.1.4 ‣ Nsight Systems 2023.2.3.1001 ‣ NVIDIA TensorRT™ 8.6.1.6 ‣ Torch-TensorRT 1.5.0.dev0 ‣ NVIDIA DALI® 1.27.0 ‣ MAGMA 2.6.2 ‣ JupyterLab 2.3.2 including Jupyter-TensorBoard ‣ TransformerEngine precision-like API that can be used seamlessly with your PyTorch code. ‣ A preview of Torch-TensorRT (1.4.0dev0) is now included. Torch-TRT is the TensorRT integration for PyTorch and brings the capabilities of Compute 2023.1.1.4 ‣ Nsight Systems 2023.2.3.1001 ‣ NVIDIA TensorRT™ 8.6.1.6 ‣ Torch-TensorRT 1.5.0.dev0 ‣ NVIDIA DALI® 1.26.0 ‣ MAGMA 2.6.2 ‣ JupyterLab 2.3.2 including Jupyter-TensorBoard ‣ TransformerEngine0 码力 | 365 页 | 2.94 MB | 1 年前3
《TensorFlow 快速入门与实战》1-TensorFlow初印象Google ���������GNMT� ���������� From TensorFlow Dev Summit 2018 Blood pressure predictions focus on blood vessels Image of retina From TensorFlow Dev Summit 2018 �� TensorFlow ��� �� TensorFlow ��� ��� TensorFlow ����� TensorFlow ���� From TensorFlow Dev Summit 2018 TensorFlow ������ Initial Release GPU & more TensorBoard 1.0 Release XLA, New APIs High-Level APIs tf.keras tf.data TF Lite0 码力 | 34 页 | 35.16 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 1 - IntroductionRaspberry-Pi like Dev Board to an independent solderable module. It has also been shipped directly on phones, such as Pixel 4. Figure 1-18: Approximate size of the EdgeTPU, Coral, and the Dev Board (Courtesy:0 码力 | 21 页 | 3.17 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesembeddings. import tensorflow_hub as tfhub word2vec_hub_layer = tfhub.KerasLayer( 'https://tfhub.dev/google/Wiki-words-250/2') word2vec_embeddings = word2vec_hub_layer(vocabulary) The shape of the word2vec_embeddings (len(vocabulary), embedding_dim)) Indeed, that is the case. It all looks good! 14 TFHub (https://tfhub.dev/) is a collection of pre-trained checkpoints of models and layers that you can directly use in your0 码力 | 53 页 | 3.92 MB | 1 年前3
《TensorFlow 快速入门与实战》2-TensorFlow初接触TensorFlow” • ��������� TensorFlow • ������ TensorFlow ���� �� ���� TensorFlow ���� From TensorFlow Dev Summit 2018 TensorFlow ������� TensorFlow ������� • Ubuntu 16.04 or later • Windows 7 or later0 码力 | 20 页 | 15.87 MB | 1 年前3
机器学习课程-温州大学-05深度学习-深度学习实践偏差和方差 本章目录 3 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 验证集(Validation Set):也叫做开发集( Dev Set ),用来做 模型选择(model selection),即做模型的最终优化及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。0 码力 | 19 页 | 1.09 MB | 1 年前3
机器学习课程-温州大学-05机器学习-机器学习实践正则化、偏差和方差 4 训练集(Training Set):帮助我们训练模型,简单的说就是通过 训练集的数据让我们确定拟合曲线的参数。 验证集(Validation Set):也叫做开发集( Dev Set ),用来做 模型选择(model selection),即做模型的最终优化及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。0 码力 | 33 页 | 2.14 MB | 1 年前3
Keras: 基于 Python 的深度学习库包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版 本上,你需要再额外安装 libhdf5: sudo apt-get install libhdf5-serial-dev 如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块 import h5py 快速开始 38 如 果 模 块 导 入 没 有 错 误, 那 么 模0 码力 | 257 页 | 1.19 MB | 1 年前3
共 9 条
- 1













