积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(34)机器学习(34)

语言

全部英语(21)中文(简体)(13)

格式

全部PDF文档 PDF(34)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 34 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    firstly, regularization and dropout are fairly straight-forward to enable in any modern deep learning framework. Secondly, data augmentation and distillation can bring significant efficiency gains during the dataset for various transformations3. 3 Menghani, Gaurav. "Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better." arXiv preprint arXiv:2106.08962 (2021). It’s to typical human behavior when making a big decision (a big purchase or an important life event). We discuss with friends and family to decide whether it is a good decision. We rely on their perspectives
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    features might be equally important, thus selecting the most informative features is crucial for making the training step efficient. In the case of visual, textual, and other multimodal data, we often line separating the two classes is called a decision boundary, and this is only one possible decision boundary. Refer to Figure 4-3 where we draw one such decision boundary. If we had more than two features - https://en.wikipedia.org/wiki/Linear_separability Figure 4-3: Extending figure 4-2, we draw a decision boundary to separate the two classes of animals (suitable and not suitable for the petting zoo)
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    2023 10 / 29 Logistic Regression: A Closer Look ... What’s the underlying decision rule in logistic regression? At the decision boundary, both classes are equiprobable; thus, we have Pr(Y = 1 | X = x; = 0 | X = x; θ) ⇒ 1 1 + exp(−θTx) = 1 1 + exp(θTx) ⇒ exp(θTx) = 1 ⇒ θTx = 0 Therefore, the decision boundary of logistic regression is nothing but a linear hyperplane Feng Li (SDU) Logistic Regression {(x(i), z(i))}i=1,··· ,mto obtain fk. Higher fk(x) implies hight probability that x is in class k Making decision: y ∗ = arg maxk fk(x) Example: Using SVM to train each binary classifier Feng Li (SDU) Logistic
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    The Margin The hyperplane actually serves as a decision boundary to differentiating positive labels from negative labels We make more confident decision if larger margin is given, i.e., the data sample denoted by d∗) α, β are dual feasible if α ⪰ 0, (α, β ) ∈ dom G and G > −∞ Often simplified by making implicit constraint (α, β ) ∈ dom G explicit Feng Li (SDU) SVM December 28, 2021 21 / 82 Weak Duality original space X Feng Li (SDU) SVM December 28, 2021 55 / 82 Kernelized SVM Prediction Define the decision boundary ω∗Tφ(x) + b∗ in the higher-dimensional feature space ω∗ = � i:α∗ i >0 α∗ i y(i)φ(x(i))
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    interacting 4 Semi-supervised learning: partially supervised learning 5 Active learning: actively making queries Feng Li (SDU) Overview September 6, 2023 22 / 57 Supervised Learning In the ML literature (SDU) Overview September 6, 2023 24 / 57 Classification and Regression Classification: finding decision boundaries Regression: fitting a curve/plane to data x t 0 1 −1 0 1 Feng Li (SDU) Overview results of unsupervised clustering to the expectations of the user. With lots of unlabeled data the decision boundary becomes apparent. Feng Li (SDU) Overview September 6, 2023 39 / 57 Semi-supervised Learning
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    Terminal delivers a diverse array of information on a single platform to facilitate financial decision- making. 4 © 2018 Bloomberg Finance L.P. All rights reserved. What is Data Technologies Automation
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Keras ii About the Tutorial Keras is an open source deep learning framework for python. It has been developed by an artificial intelligence researcher at Google named Francois the field of deep learning and neural network framework. This tutorial is intended to make you comfortable in getting started with the Keras framework concepts. Prerequisites Before proceeding concepts given in this tutorial, we assume that the readers have basic understanding of deep learning framework. In addition to this, it will be very helpful, if the readers have a sound knowledge of Python
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Apple’s CoreML as well which are covered in chapter 10. If you are not familiar with the tensorflow framework, we refer you to the book Deep Learning with Python1. All the code examples in this book are available to CPU, GPU, and TPU resources. You can also run this locally on your machine using the Jupyter framework or with other cloud services. The solution to this specific exercise is in this notebook. Solution: acceptable tolerance) value. Exercise: Data Dequantization “But you wouldn't clap yet. Because making something disappear isn't enough; you have to bring it back. That's why every magic trick has a
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    find the decision boundary in the classification problem. The decision boundary is defined as the line where P(y = 1|x; θ) = g(θT x) = 0.5 which corresponds to θT x = 0 Plotting the decision boundary 20 30 40 50 60 70 Exam 1 score 40 50 60 70 80 90 100 Exam 2 score Admitted Not admitted Decision Boundary 5. What is the probability that a student with a score of 20 on Exam 1 and a score of achieving convergence? 2. Show how L is decreased iteratively by Newton’s method. 3. Plot the decision boundary. 4. What is the probability that a student with a score of 20 on Exam 1 and a score of
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    expensive undertaking. Factoring in the costs of training human labelers on a given task, and then making sure that the labels are reliable, human labeling gets very expensive very quickly. Even after that dissimilar. How do we go about creating positive pairs? One example of such a recipe is the SimCLR framework12,13 (refer to Figure 6-10). SimCLR creates positive pairs by using different data augmentations enforce agreement between and . Figure 6-10: Contrastive learning as implemented in the SimCLR framework. The input is augmented to generate two views, and . Using the shared encoder , hidden 13 Chen
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 34 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesArchitecturesLectureLogisticRegressionSupportVectorMachineOverviewQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野kerastutorialCompressionExperimentandNewtonMethodAdvancedTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩