keras tutorial........................................................................................... 17 Model ................................................................................................. ............................................................................... 58 10. Keras ― Model Compilation ..................................................................................... ..... 61 Compile the model ........................................................................................................................................ 62 Model Training ..............0 码力 | 98 页 | 1.57 MB | 1 年前3
PyTorch Release Notesfunctionality. PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead nvcr.io/nvidia/ pytorch:-py3 Note: If you use multiprocessing for multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough To pull data and model descriptions from locations outside the container for use by PyTorch or save results to locations outside the container, mount one or more host directories as Docker® data volumes 0 码力 | 365 页 | 2.94 MB | 1 年前3
Keras: 基于 Python 的深度学习库49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Model 的实用属性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3 Model 类模型方法 . . . . . . . . . . . . . . . 239 20.8 plot_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 20.9 multi_gpu_model . . . . . . . . . . . . . . . . . . . . . . Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺 序模型,它是由多个网络层线性堆叠的栈。对于更复杂的结构,你应该使用 Keras 函数式 API, 它允许构建任意的神经网络图。 Sequential 顺序模型如下所示: from keras.models import Sequential model = Sequential()0 码力 | 257 页 | 1.19 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesyou'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer effectively with others who speak different languages. An application that employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this chapter, our In the first chapter, we briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality. These techniques can boost metrics like accuracy0 码力 | 56 页 | 18.93 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquescompression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the model footprint by reducing the number of trainable parameters. However requires many trials and evaluations to reach a smaller model, if it is at all possible. Second, such an approach doesn’t generalize well because the model designs are subjective to the specific problem. In In this chapter, we introduce Quantization, a model compression technique that addresses both these issues. We’ll start with a gentle introduction to the idea of compression. Details of quantization and0 码力 | 33 页 | 1.96 MB | 1 年前3
AI大模型千问 qwen 中文文档Qwen Team 2024 年 05 月 11 日 快速开始 1 文档 3 i ii Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded models and multimodal models are pretrained on large-scale multilingual and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat",0 码力 | 56 页 | 835.78 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewtechniques can help us meet our model quality goals. Techniques like distillation and data augmentation improve the model quality, without increasing the footprint of the model (size, latency, etc). And as As we described in chapter 3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the costs of training human labelers on a given task, and reliable, human labeling gets very expensive very quickly. Even after that it is likely that the model might not be able to capture the intricacies of your task well. Self-Supervised learning helps to0 码力 | 31 页 | 4.03 MB | 1 年前3
全连接神经网络实战. pytorch 版tensor 理解为是“data”。 我们需要先导入 pytorch,顺便导入 numpy: import torch import numpy as np 现在我们尝试将 list 或者 np.array 转换为 pytorch 的数组: data1 = [ [ 1 , 2 ] , [ 3 , 4 ] ] data_tensor = torch . tensor ( data1 ) print print ( data_tensor . shape ) np_array1 = np . array ( data1 ) data_tensor = torch . from_numpy( np_array1 ) print ( data_tensor . shape ) 输出都是: torch . Size ( [ 2 , 2 ] ) 对于二维 tensor 之间的相乘,@ 和 .matmul 7 y = data_tensor @ data_tensor .T print (y) y = data_tensor ∗ data_tensor print (y) 输出分别是: [ [ 5 , 11] , [11 , 2 5 ] ] [ [ 5 , 11] , [11 , 2 5 ] ] tensor 可以转化为 numpy: np_array2 = data_tensor0 码力 | 29 页 | 1.40 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesin ANALOG magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing temporal data. These breakthroughs contributed to bigger and bigger models. Although they improved the quality of the solutions, the bigger models posed deployment challenges. What good is a model that cannot deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint and improve inference efficiency while preserving the problem0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionthere might not be a single algorithm that works perfectly, and there is a large amount of unseen data that the algorithm needs to process. Unlike traditional algorithm problems where we expect exact optimal learning algorithms help build models, which as the name suggests is an approximate mathematical model of what outputs correspond to a given input. To illustrate, when you visit Netflix’s homepage, the might be popular with other users too. If we train a model to predict the probability based on your behavior and currently trending content, the model will assign a high probability to Seinfeld. While there0 码力 | 21 页 | 3.17 MB | 1 年前3
共 86 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9













