积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)机器学习(15)

语言

全部英语(9)中文(简体)(6)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    be less likely to have, for example, inverted faces. It wouldn’t be much use spending time and resources to train a model that recognizes faces in any orientation if it is going to be used to scan people to produce synthetic samples requires more computational resources. Nevertheless, for the data scarce scenarios, extra computational resources might still be cheaper than human labor costs to produce training be expensive when using very large models. def distillation_loss_fn(y_true_combined, y_pred): """Custom distillation loss function.""" # We will split the y tensor to extract the ground-truth and the
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    for initialization • getAction() • setPerception(nextObservation,action,reward,termina l) • Resources: • http://ww1.sinaimg.cn/mw690/8708cad7jw1f8naomr mweg209n0fo7wj.gif • https://github.com/li- Amazon API Gateway AWS Lambda 3: Translate REST response into natural language Mobile Hub Custom Connector 2: Invoke a SaaS application or an existing business application Business Application
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    ENDPOINT Qwen 1 - READY 2/2 3.85.107.228:30002 Service Replicas SERVICE_NAME ID VERSION IP LAUNCHED RESOURCES STATUS REGION Qwen 1 1 - 2 mins ago 1x Azure({'A100-80GB': 8}) READY eastus Qwen 2 1 - 2 mins ago picture ' + \ 'and select an image operation from the given document to process the image' # Add a custom tool named my_image_gen: @register_tool('my_image_gen') class MyImageGen(BaseTool): description = embedding model or modify the context window size or text chunk size depending on your computing resources. Qwen 1.5 model families support a maximum of 32K context window size. import torch from llama_index
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    model that we can use for inference on smartphones and other devices with lesser compute and memory resources. import tempfile final_model = tfmot.clustering.keras.strip_clustering(clustered_model) _, clustered_keras_file be converted during inference. Because this lookup operation is very simple, it is easy to create custom kernels for them, such as demonstrated here for Tensorflow and here for TFLite. We would also encourage
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    Random Search are limited by the available computational budget. They can be increased as more resources become available or reduced in resource constrained situations. The likelihood of finding the optimal alternative search approach which evaluates multiple configurations and adaptively allocates more resources to the promising ones. This is called Configuration Evaluation. Let's discuss it in detail in the (b) This plot shows the validation error as a function of resources allocated to each configuration. Promising configurations get more resources. Source: Hyperband2 2 Li, Lisha, et al. "Hyperband: A novel
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    has led to an increase in the network complexity, number of parameters, the amount of training resources required to train the network, prediction latency, etc. Natural language models such as GPT-3 now Similarly, if you are training a large model from scratch on either with limited or costly training resources, developing models that are designed for Training Efficiency would help. For example, if model A that work together to allow users to train and deploy pareto-optimal models that simply cost less resources to train and/or deploy. This means going from the red dots in Figure 3 to the green dots on the
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Docker engine loads the image into a container which runs the software. ‣ You define the runtime resources of the container by including additional flags and settings that are used with the command. These train with FP16 ‣ Matrix multiplication on FP16 inputs uses Tensor Core math when available ‣ A custom batch normalization layer is implemented to use cuDNN for batch normalization with FP16 inputs ‣
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    demonstrate how embeddings can be used to achieve a high performing model while optimizing your training resources? Here we go! 13 The embedding training is referred to as the pretraining step in the recent literature image, text, audio, and video domains that are ready-to-deploy. For instance, you should not spend resources and time training your own ResNet model. Instead, you can directly get the model architecture and extended the reach of convolution models to mobile and other devices with limited compute and memory resources. This layer aims to reduce the footprint of convolutional layers with minimal quality compromise
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    anything related to the inner working of the layer. Once the custom functionality is done, we can call the base class build function. Our custom build function is as follows: 8. Keras ― Customized Layer  Line 2 creates the weight corresponding to input shape and set it in the kernel. It is our custom functionality of the layer. It creates the weight using ‘normal’ initializer.  Line 6 calls Implement call method call method does the exact working of the layer during training process. Our custom call method is as follows: def call(self, input_data): return K.dot(input_data, self.kernel)
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 63. 迁移学习-自定义数据集实战

    Transfer Learning Step1.Load data ▪ Inherit from torch.utils.data.Dataset ▪ __len__ ▪ __getitem__ Custom Dataset Preprocessing ▪ Image Resize ▪ 224x224 for ResNet18 ▪ Data Argumentation ▪ Rotate ▪ details https://indico.io/blog/exploring-computer-vision-transfer-learning/ In Conclusion ▪ Load custom data ▪ Train from scratch ▪ Transfer learning 下一课时 Thank You.
    0 码力 | 16 页 | 719.15 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniques亚马亚马逊AWSAIServicesOverviewAI模型千问qwen中文文档AdvancedCompressionAutomationIntroductionPyTorchReleaseNotesArchitectureskerastutorial深度学习入门实战63迁移定义数据定义数据
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩