积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)

语言

全部中文(简体)(14)英语(12)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.043 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 25 交叉熵

    MSE ▪ Cross Entropy Loss ▪ Hinge Loss Entropy ▪ Uncertainty ▪ measure of surprise ▪ higher entropy: higher uncertainty. Claude Shannon https://towardsdatascience.com/demystifying-cross-entropy-e80e3ad54a8 -e80e3ad54a8 Lottery Cross Entropy ▪ P=Q ▪ cross Entropy = Entropy ▪ for one-hot encoding, ▪ entropy = 1log1=0 ? ?, ? = − ෍ ?(?) log ?(?) KL Divergence Binary Classification for example why
    0 码力 | 13 页 | 882.21 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    preprocessing layer at the bottom (right after the input layer). We compile the model with a sparse cross entropy loss function (discussed in chapter 2) and the adam optimizer. from tensorflow.keras import student more information than just hard binary labels. The student is trained using the regular cross-entropy loss with the hard labels, as well as using the distillation loss function which uses the function that minimizes the cross-entropy for both soft and hard labels. The combined loss function is as follows: In the above equation, denotes the original loss function (cross-entropy) that uses the
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Negative pairs are created using all the other pairs, and the loss to be minimized is a variant of the cross-entropy loss. We would refer you to the SimCLR paper for more details about the chosen loss functions smoothing is easy to implement on your own. However, various frameworks support it through their cross entropy loss function implementation. For example, Tensorflow provides a parameter to set the via Adding a ‘subclass head’ which generates subclasses for each original class. 2. Using the original cross entropy loss where the probability of a class is calculated by summing up the probabilities of all
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 32. Train-Val-Test-交叉验证

    Kaggle Train Set Test Set Val Set Unavailable train-val-test K-fold cross-validation Train Set Test Set Val Set k-fold cross validation ▪ merge train/val sets ▪ randomly sample 1/k as val set
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    they can run on GPU. • Examples: And more operations like: Indexing, slicing, reshape, transpose, cross product, matrix product, element wise multiplication etc... Tensor (continued) • Attributes of performs the updates Loss • Loss • Various predefined loss functions to choose from • L1, MSE, Cross Entropy …... Model • In PyTorch, a model is represented by a regular Python class that inherits
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    L等 • Optimizer  FTRL、AdaGrad、AdaDelta、ADAM、AmsGrad、etc • Loss Function  LogLoss、SquareLoss、Cross Entropy、etc • 评估指标  AUC、Loss、MAE、RMSE  支持外部eval工具,计算MAP、NDCG MLX的模型能力 • 提供离线、近线、在线全流程解决方案,各阶段提供扩展方案,降低算法迭代成本; Random Forest 2. XGBoost 1. MLP 2. 少量特征空间 的Wide & Deep 1. 大规模离散特征 的Wide & Deep 2. DeepFM 3. Deep Cross 树模型 小规模DNN 大规模离散DNN • 超大规模深度学习  工程实现  数据并行、模型并行  在线、近线、离线逻辑一致性  实时模型  业务应用  召回模型,ANN搜索
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    Scikit-learn主要用法 交叉验证及超参数调优 from sklearn.model_selection import cross_val_score clf = DecisionTreeClassifier(max_depth=5) scores = cross_val_score(clf, X_train, y_train, cv=5, scoring=’f1_weighted’)
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    model that fit the data we have very well, but do poorly on new data (poor generalization ability). Cross-validation, regularization, Reducing dimensionality is another possibility. It is apparent that model with degree=3 seems good. We might be able to choose a good value for M using the method of “cross validation”, which looks for the value that does best at prediction one part of the data from the
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    case, classes are 0, 1, 2 and so on until 9) inputs. We use the sparse variant of the categorical cross entropy loss function so that we can use the index of the correct class for each example. The regular are ready to make certain trade-offs. We hope that this chapter helps more deep learning models to cross the finish line. The next chapter will introduce learning techniques to improve quality metrics like
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    computations), OBD exclusively relies on second derivatives with respect to each weight ( ) and ignores cross interaction between the weights . The authors demonstrated that pruning by taking the second-derivative the minimum and maximum values it observes for . Each quantization bin boundary is denoted by a cross. This is not ideal because the precision allocated to the range [-4.0, -2.0] or [2.0, 4.0] (spanning
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
深度学习PyTorch入门实战25交叉EfficientDeepLearningBookEDLChapterTechniquesAdvancedTechnicalReview32TrainValTest验证Tutorial超大大规规模大规模超大规模美团应用建平机器课程温州大学ScikitlearnLectureOverviewCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩