积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)机器学习(14)

语言

全部英语(10)中文(简体)(4)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    female X(s) = The hometown X(s) of a randomly drawn person (s) from (S) Examples: Continuous random variables (S is continuous) X(s) = r be the heart rate of a randomly drawn person s in our class S Feng valued random variable is a function of the outcome of a ran- domized experiment X : S → R For continuous random variable X P(a < X < b) = P({s ∈ S : a < X(s) < b}) For discrete random variable X P(X 9 / 122 Probability Distribution (Contd.) Probability distribution for continuous random variables Suppose X is a continuous random variable X : S → A Probability density function (PDF) of X is a
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    converting high precision continuous values to low precision discrete values. Take a look at figure 2-3. It shows a sine wave and an overlapped quantized sine wave. The sine wave is continuous, a high precision Figure 2-4: Quantizing floating-point continuous values to discrete unsigned values. The continuous values range from xmin to xmax, and are mapped to continuous values in [0, 2b - 1] (in the above figure = 3, hence the quantized values are in the range [0, 7]. For the purpose of quantization, the continuous values are also clamped to be in the range [xmin, xmax]. Solution: Note that we have to map all
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 24. Logistic Regression

    Logistic Regression 主讲人:龙良曲 Recap ▪ for continuous: ? = ?? + ? ▪ for probability output: ? = ? ?? + ? ▪ ?: ??????? ?? ???????? Binary Classification ▪ interpret network as ?: ? → ? ? ?; ? ▪ output = 0 if accuracy unchanged but weights changed ▪ issues 2. gradient not continuous since the number of correct is not continuous Q2. why call logistic regression ▪ use sigmoid ▪ Controversial! ▪ MSE
    0 码力 | 12 页 | 798.46 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    of these choices are boolean, others have discrete parameters and still there are the ones with continuous parameters. Some choices even have multiple parameters. For example, horizontal flip is a boolean a set of well-defined values for each of those parameters. The parameters can take discrete or continuous values. It is called a "search" space because we are searching for a point in which minimizes (or example of a search space with two parameters. However, in this example, the second parameter is a continuous valued parameter with domain . are some of the valid points in this search space. As we can see
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    (y; ψ) = P(Y = y) = ψy(1 − ψ)1−y (5) • A2: X | Y = 0 ∼ N(µ0, Σ): The conditional probability of continuous random variable X given Y = 0 is a Gaussian distribution parameterized by µ0 and Σ, such that the � −1 2(x − µ0)T Σ−1(x − µ0) � (6) • A3: X | Y = 1 ∼ N(µ1, Σ): The conditional probability of continuous random variable X given Y = 1 is a Gaussian distribution parameterized by µ1 and Σ, such that the
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 53. 情感分类实战

    情感分类实战 主讲人:龙良曲 Google CoLab ▪ Continuous 12 hours ▪ free K80 for GPU ▪ no need to cross GFW Load Dataset Network Load word embedding Train Test 下一课时 GAN Thank You.
    0 码力 | 11 页 | 999.73 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    Shandong University, China 1 Linear Regression Problem In regression problem, we aim at predicting a continuous target value given an input feature vector. We assume a n-dimensional feature vector is denoted
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    regression problem, but we would like to predict only a small number of discrete values (instead of continuous values) Binary classification problem: y ∈ {0, 1} where 0 represents negative class, while 1 denotes
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    Li (SDU) Linear Regression September 13, 2023 2 / 31 Supervised Learning Regression: Predict a continuous value Classification: Predict a discrete value, the class Living area (feet2) Price (1000$s)
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    (user/item/attribute)  动态图 标准化: Standard Libraries Graph-Learn: 分布式图算法库 标准化: Standard Solutions Continuous Optimization: Active learning Data Label Model Serving CV / NLP解决方案: EAS Web App Mobile
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
LectureGaussianDiscriminantAnalysisNaiveBayesEfficientDeepLearningBookEDLChapterCompressionTechniques深度学习PyTorch入门实战24LogisticRegressionAutomationNoteson53情感分类Linear阿里云上建模实践程孟力
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩