积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(9)中文(简体)(4)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    model with each of these four options to make an informed decision. Blessed with a large research community, the deep learning field is growing at a rapid pace. Over the past few years, we have seen newer controller architecture called NASNet6 which predicts the architecture of cells that are used as building 6 Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." Proceedings reduces the output feature map to half. Figure 7-7 shows two child networks that use these cells as building blocks. The network on the left is smaller which was used to classify the cifar10 dataset. The larger
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 keras tutorial

    highly powerful and dynamic framework and comes up with the following advantages:  Larger community support.  Easy to test.  Keras neural networks are written in Python which makes things hidden neuron layer. It has three important layers:  Convolution layer: It is the primary building block and perform computational tasks based on convolution function.  Pooling layer: It is performance of model. Keras 26 As learned earlier, Keras layers are the primary building block of Keras models. Each layer receives input information, do some computation and finally output
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    this book, we have chosen to work with Tensorflow 2.0 (TF) because it has exhaustive support for building and deploying efficient models on devices ranging from TPUs to edge devices at the time of writing model. Deep learning is an exciting and fast growing field which is fortunate to enjoy a large community of researchers, developers and entrepreneurs. It excites us when we come across a problem that it
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 02. 开发环境安装

    开发环境准备 主讲人:龙良曲 开发环境 ▪ Python 3.7 + Anaconda 5.3.1 ▪ CUDA 10.0 ▪ Pycharm Community ANACONDA CUDA 10.0 ▪ NVIDIA显卡 CUDA 安装确认 路径添加到PATH CUDA 测试 PyTorch安装 管理员身份运行cmd PyCharm ▪ 配置Interpreter
    0 码力 | 14 页 | 729.50 KB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》2-TensorFlow初接触

    Container Virtual Machine Docker Container � Docker ��� TensorFlow https://hub.docker.com/editions/community/docker-ce-desktop-mac 1. Install Docker for Mac 2. Run Docker for Mac 3. Pull a TensorFlow
    0 码力 | 20 页 | 15.87 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》1-TensorFlow初印象

    1980s��������� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning 1990s��������������� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep ������������������ Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning ����� Google ��� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep
    0 码力 | 34 页 | 35.16 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    during runtime. • It includes many layers as Torch. • It includes lot of loss functions. • It allows building networks whose structure is dependent on computation itself. • NLP: account for variable length • Dynamic VS Static Computation Graph Building the graph and computing the graph happen at the same time. Seems inefficient, especially if we are building the same graph over and over again... Misc
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    In case you depend on Conda-specific packages, which might not be available on PyPI, we recommend building these packages from source. A workaround is to manually install a Conda package manager, and add In case you depend on Conda-specific packages, which might not be available on PyPI, we recommend building these packages from source. A workaround is to manually install a Conda package manager, and add In case you depend on Conda-specific packages, which might not be available on PyPI, we recommend building these packages from source. A workaround is to manually install a Conda package manager, and add
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    deploying efficient deep learning models from large servers to tiny microcontrollers. Let us start building a mental model of efficient deep learning in the next section. A Mental Model of Efficient Deep introduction to efficient models and layers, which are designed with efficiency in mind and can be used as building blocks in your usecase. Finally, we went over infrastructure, both software and hardware, which
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    ['Company', 'EducationalInstitution', 'Artist', 'Athlete', 'OfficeHolder', 'MeanOfTransportation', 'Building', 'NaturalPlace', 'Village', 'Animal', 'Plant', 'Album', 'Film', 'WrittenWork'] The data is in initialized the layer, we can invoke the adapt() method with the dataset to use as a source for building the vocabulary. # This step allows the vectorization layer to build the vocabulary. train_text_ds
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationkerastutorialCompressionTechniques深度学习PyTorch入门实战02开发环境安装TensorFlow快速接触印象TutorialReleaseNotesIntroductionArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩