积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部英语(12)中文(简体)(6)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.043 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Tutorial

    PyTorch Tutorial Willie Chang Pranay Manocha Installing PyTorch • ???????????? On your own computer • Anaconda/Miniconda: conda install pytorch -c pytorch • Others via pip: pip3 install torch • ??
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Keras i Keras ii About the Tutorial Keras is an open source deep learning framework for python. It has been developed by an artificial intelligence researcher Leading organizations like Google, Square, Netflix, Huawei and Uber are currently using Keras. This tutorial walks through the installation of Keras, basics of deep learning, Keras models, Keras layers, applications. Audience This tutorial is prepared for professionals who are aspiring to make a career in the field of deep learning and neural network framework. This tutorial is intended to make you comfortable
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Machine Learning Pytorch Tutorial TA : 曾元(Yuan Tseng) 2022.02.18 Outline ● Background: Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors implementations of recent deep learning papers ○ ... References ● Machine Learning 2021 Spring Pytorch Tutorial ● Official Pytorch Tutorials ● https://numpy.org/ Any questions?
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    model: This model was introduced in the Aggregated Residual Transformations for Deep Neural Networks paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block added Squeeze-and- Excitation (SE) module that was introduced in the Squeeze-and-Excitation Networks paper. This model script is available on GitHub. ‣ TransformerXL model: This transformer-based language Our implementation is based on the codebase that was published by the authors of the Transformer-XL paper. Our implementation uses modified model architecture hyperparameters, our modifications were made
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    compute during the pre-training phase and pre-training BERT-like models is not cheap. The original paper reports BERT-Base requiring 4 Cloud TPU Pods (4 chips each, total 16 chips) over 4 days for a total the loss to be minimized is a variant of the cross-entropy loss. We would refer you to the SimCLR paper for more details about the chosen loss functions and other alternatives considered. Once the desired presented in the context of different model architectures and hyperparameters. For example, the paper titled: ResNet Strikes Back by Wightman et al.14 demonstrates improvement in the accuracy achieved
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 人工智能发展史

    Machine: 1992 http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Dark time ▪ Paper got rejected ▪ Hinton moved to CIFAR seeking for funding ▪ Conspiracy: rebrand“neural network”as ctures/backprop_old.pdf Deep is more efficient: representation learning http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf Another Hero: NVIDIA http://www.iro.umontreal 60,000,000 parameters ▪ 5 conv layers ▪ 26.2% -> 15.3%, top-5 error rate https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional- neural-networks.pdf http://www.iro.umontreal
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    architectures. HPO requires all the hyperparameters to be known prior to the start of the search. In their paper titled "Neural Architecture Search With Reinforcement Learning"5, Zoph et. al. employed neural networks large controller is required which would invariably lead to higher search expenses. In a follow up paper, Zoph et. al. addressed the above shortcomings with a novel controller architecture called NASNet6 predict the design of two cells, the total number of predicted parameters is . In the original NASNet paper, the value for is chosen to be 5. Figure 7-8 (right) shows a predicted block. Figure 7-8: The structure
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    daunting? Don’t fret! Let’s start with how to compute the saliency scores. Saliency Scores In the paper Optimal Brain Damage1, LeCun et al. suggested that as much as 50% of the connections (weights) from relies on it for sparsifying a deep learning model. The authors of the Optimal Brain Damage (OBD) paper approximate the saliency score using a second-derivative of the weights , where is the loss function growth is higher in layers which have a higher impact on the loss value. Han et al. in their seminal paper titled "Learning both Weights and Connections for Efficient Neural Networks8" proposed a three step
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    used for learning and scientific research and is freely disseminated, but it must not be used for commercial purposes. Otherwise, the contributor is not responsible for the consequences. 目录 I 目录 1 Keras: True,则网络将展开,否则将使用符号循环。展开可以 加速 RNN,但它往往会占用更多的内存。展开只适用于短序列。 参考文献 • Long short-term memory (original 1997 paper) • Learning to forget: Continual prediction with LSTM • Supervised sequence labeling with recurrent
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5–32. [5] Ridgeway G . Special Invited Paper. Additive Logistic Regression: A Statistical View of Boosting: Discussion[J]. Annals of Statistics
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchTutorialkerastutorialMachineLearningPytorchReleaseNotesEfficientDeepBookEDLChapterAdvancedTechniquesTechnicalReview人工智能人工智能发展发展史AutomationCompressionKeras基于Python深度学习机器课程温州大学08集成
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩