积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)机器学习(5)

语言

全部英语(5)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 5 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Experiment 1: Linear Regression

    predict the height given a new age value. In Matlab/Octave, you can load the training set using the commands x = load ( ’ ex1x . dat ’ ) ; y = load ( ’ ex1y . dat ’ ) ; This will be our training set for in addition to the usual x0 = 1, so x ∈ R2 ). If you’re using Mat- lab/Octave, run the following commands to plot your training set (and label the axes): figure % open a new f i g u r e window plot (x line fit from your algorithm on the same graph as your training data according to θ. The plotting commands will look something like this: hold on % Plot new data without c l e a r i n g old p l o t plot
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    apply distillation in its entirety for a model trained to classify speech commands into one of 12 classes, using the speech commands dataset.The classes Project: Distillation of a Speech Model. The code package for processing audio data, and load the speech_commands dataset from TFDS. !pip install pydub data_ds = tfds.load( name='speech_commands', read_config=tfds.ReadConfig(try_autocache=False) )
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    P: Average distance traveled before a human-judged error E: A sequence of images and steering commands recorded while ob- serving a human driver Feng Li (SDU) Overview September 6, 2023 11 / 57 Why
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Clustering to compress a deep learning model In this section, we will continue to work with the Speech Commands dataset which we used in chapter 3. To recap, it is a dataset of spoken words designed to help train
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    be enough. Therefore, you should increase the shared memory size by issuing one of the following commands: ‣ --ipc=host ‣ --shm-size= in the command line to docker run --gpus all
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 5 条
  • 1
前往
页
相关搜索词
ExperimentLinearRegressionEfficientDeepLearningBookEDLChapterTechniquesLectureOverviewAdvancedCompressionPyTorchReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩