 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesthe petting zoo. If we revisit the plot in Figure 4-1 with the newly assigned labels in the third column of Table 4-2, we can see a pattern. It is possible to linearly separate3 the data points belonging with manual embeddings. One example of an automated embedding generation technique is the word2vec family of algorithms6 (apart from others like GloVe7) which can learn embeddings for word tokens for NLP result for any other permutation of the words in the context. Hence the name Bag of Words for this family of model architectures. In practice, you need not be limited to this architecture for solving the0 码力 | 53 页 | 3.92 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesthe petting zoo. If we revisit the plot in Figure 4-1 with the newly assigned labels in the third column of Table 4-2, we can see a pattern. It is possible to linearly separate3 the data points belonging with manual embeddings. One example of an automated embedding generation technique is the word2vec family of algorithms6 (apart from others like GloVe7) which can learn embeddings for word tokens for NLP result for any other permutation of the words in the context. Hence the name Bag of Words for this family of model architectures. In practice, you need not be limited to this architecture for solving the0 码力 | 53 页 | 3.92 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesFigure 3-11: The image on the left is a cut-mix of turtle (3%) and tortoise (97%) images in the center column and the top-right image is their average mix. Bottom-right is a mixup of turtle 8 When the samples For example, the top-right image is an average mix of turtle and tortoise images in the center column. The average mixing is a label mixing technique that averages the sample images to produce the mixed when making a big decision (a big purchase or an important life event). We discuss with friends and family to decide whether it is a good decision. We rely on their perspectives and life experiences to guide0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesFigure 3-11: The image on the left is a cut-mix of turtle (3%) and tortoise (97%) images in the center column and the top-right image is their average mix. Bottom-right is a mixup of turtle 8 When the samples For example, the top-right image is an average mix of turtle and tortoise images in the center column. The average mixing is a label mixing technique that averages the sample images to produce the mixed when making a big decision (a big purchase or an important life event). We discuss with friends and family to decide whether it is a good decision. We rely on their perspectives and life experiences to guide0 码力 | 56 页 | 18.93 MB | 1 年前3
 全连接神经网络实战. pytorch 版全连接神经网络实战 . pytorch 版 Dezeming Family Dezeming Copyright © 2021-10-02 Dezeming Family Copying prohibited All rights reserved. No part of this publication may be reproduced or transmitted in any permission of the publisher. Art. No 0 ISBN 000–00–0000–00–0 Edition 0.0 Cover design by Dezeming Family Published by Dezeming Printed in China 目录 0.1 本书前言 5 1 准备章节 . . . . . . . . . . . . . . . .0 码力 | 29 页 | 1.40 MB | 1 年前3 全连接神经网络实战. pytorch 版全连接神经网络实战 . pytorch 版 Dezeming Family Dezeming Copyright © 2021-10-02 Dezeming Family Copying prohibited All rights reserved. No part of this publication may be reproduced or transmitted in any permission of the publisher. Art. No 0 ISBN 000–00–0000–00–0 Edition 0.0 Cover design by Dezeming Family Published by Dezeming Printed in China 目录 0.1 本书前言 5 1 准备章节 . . . . . . . . . . . . . . . .0 码力 | 29 页 | 1.40 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 1 - IntroductionCoral, and the Dev Board (Courtesy: Bhuwan Chopra) Jetson (see Figure 1-19) is Nvidia’s equivalent family of accelerators for edge devices. It comprises the Nano, which is a low-powered "system on a module" based on the NVidia Volta and Pascal GPU architectures. As expected, the difference within the Jetson family is primarily the type and number of GPU cores on the accelerators. This makes the Nano suited for0 码力 | 21 页 | 3.17 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 1 - IntroductionCoral, and the Dev Board (Courtesy: Bhuwan Chopra) Jetson (see Figure 1-19) is Nvidia’s equivalent family of accelerators for edge devices. It comprises the Nano, which is a low-powered "system on a module" based on the NVidia Volta and Pascal GPU architectures. As expected, the difference within the Jetson family is primarily the type and number of GPU cores on the accelerators. This makes the Nano suited for0 码力 | 21 页 | 3.17 MB | 1 年前3
 动手学深度学习 v2.0�→'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family �→', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal' 'lkj_cholesky', �→'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', �→'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 空间。 10.6. 自注意力和位置编码 411 P = P[0, :, :].unsqueeze(0).unsqueeze(0) d2l.show_heatmaps(P, xlabel='Column (encoding dimension)', ylabel='Row (position)', figsize=(3.5, 4), cmap='Blues') 相对位置信息 除了捕获绝对0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0�→'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family �→', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal' 'lkj_cholesky', �→'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', �→'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 空间。 10.6. 自注意力和位置编码 411 P = P[0, :, :].unsqueeze(0).unsqueeze(0) d2l.show_heatmaps(P, xlabel='Column (encoding dimension)', ylabel='Row (position)', figsize=(3.5, 4), cmap='Blues') 相对位置信息 除了捕获绝对0 码力 | 797 页 | 29.45 MB | 1 年前3
 Experiment 1: Linear Regressionones (m, 1) , x ] ; % Add a column of ones to x 2 From this point on, you will need to remember that the age values from your training data are actually in the second column of x. This will be important : , 2 ) , x∗ theta , ’− ’ ) % remember that x i s now a matrix % with 2 columnsand the second % column contains the time info legend ( ’ Training data ’ , ’ Linear r e g r e s s i o n ’ ) Note that0 码力 | 7 页 | 428.11 KB | 1 年前3 Experiment 1: Linear Regressionones (m, 1) , x ] ; % Add a column of ones to x 2 From this point on, you will need to remember that the age values from your training data are actually in the second column of x. This will be important : , 2 ) , x∗ theta , ’− ’ ) % remember that x i s now a matrix % with 2 columnsand the second % column contains the time info legend ( ’ Training data ’ , ’ Linear r e g r e s s i o n ’ ) Note that0 码力 | 7 页 | 428.11 KB | 1 年前3
 Experiment 2: Logistic Regression and Newton's Methodstudent’s scores on two exams. In your training data, the first column of your x array represents all Test 1 scores, and the second column represents all Test 2 scores, and the y vector uses “1” to label0 码力 | 4 页 | 196.41 KB | 1 年前3 Experiment 2: Logistic Regression and Newton's Methodstudent’s scores on two exams. In your training data, the first column of your x array represents all Test 1 scores, and the second column represents all Test 2 scores, and the y vector uses “1” to label0 码力 | 4 页 | 196.41 KB | 1 年前3
 机器学习课程-温州大学-numpy使用总结多维数组可以进行连接,分段等多种操作。我们先来看 vstack(),hstack(),column_stack()函数。 > a = np.arange(3) > b = np.arange(10, 13) > v = np.vstack((a, b)) # 按第1轴连接数组 > h = np.hstack((a, b)) # 按第0轴连接数组 > c = np.column_stack((a, b)) # 按列连接多个一维数组0 码力 | 49 页 | 1.52 MB | 1 年前3 机器学习课程-温州大学-numpy使用总结多维数组可以进行连接,分段等多种操作。我们先来看 vstack(),hstack(),column_stack()函数。 > a = np.arange(3) > b = np.arange(10, 13) > v = np.vstack((a, b)) # 按第1轴连接数组 > h = np.hstack((a, b)) # 按第0轴连接数组 > c = np.column_stack((a, b)) # 按列连接多个一维数组0 码力 | 49 页 | 1.52 MB | 1 年前3
 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 pandas.read_csv 方法实现了快速读取 CSV(comma-separated) 文件到数据框的功能。 数据可视化库:matplotlib0 码力 | 46 页 | 5.71 MB | 1 年前3 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 pandas.read_csv 方法实现了快速读取 CSV(comma-separated) 文件到数据框的功能。 数据可视化库:matplotlib0 码力 | 46 页 | 5.71 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesa convolutional layer which receives a 3-channel input. Each individual 3x3 matrix is a kernel. A column of 3 kernels represents a channel. As you might notice, with such structured sparsity we can obtain0 码力 | 34 页 | 3.18 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesa convolutional layer which receives a 3-channel input. Each individual 3x3 matrix is a kernel. A column of 3 kernels represents a channel. As you might notice, with such structured sparsity we can obtain0 码力 | 34 页 | 3.18 MB | 1 年前3
共 11 条
- 1
- 2













