积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部英语(6)中文(简体)(5)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.045 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    the petting zoo. If we revisit the plot in Figure 4-1 with the newly assigned labels in the third column of Table 4-2, we can see a pattern. It is possible to linearly separate3 the data points belonging with manual embeddings. One example of an automated embedding generation technique is the word2vec family of algorithms6 (apart from others like GloVe7) which can learn embeddings for word tokens for NLP result for any other permutation of the words in the context. Hence the name Bag of Words for this family of model architectures. In practice, you need not be limited to this architecture for solving the
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Figure 3-11: The image on the left is a cut-mix of turtle (3%) and tortoise (97%) images in the center column and the top-right image is their average mix. Bottom-right is a mixup of turtle 8 When the samples For example, the top-right image is an average mix of turtle and tortoise images in the center column. The average mixing is a label mixing technique that averages the sample images to produce the mixed when making a big decision (a big purchase or an important life event). We discuss with friends and family to decide whether it is a good decision. We rely on their perspectives and life experiences to guide
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    全连接神经网络实战 . pytorch 版 Dezeming Family Dezeming Copyright © 2021-10-02 Dezeming Family Copying prohibited All rights reserved. No part of this publication may be reproduced or transmitted in any permission of the publisher. Art. No 0 ISBN 000–00–0000–00–0 Edition 0.0 Cover design by Dezeming Family Published by Dezeming Printed in China 目录 0.1 本书前言 5 1 准备章节 . . . . . . . . . . . . . . . .
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Coral, and the Dev Board (Courtesy: Bhuwan Chopra) Jetson (see Figure 1-19) is Nvidia’s equivalent family of accelerators for edge devices. It comprises the Nano, which is a low-powered "system on a module" based on the NVidia Volta and Pascal GPU architectures. As expected, the difference within the Jetson family is primarily the type and number of GPU cores on the accelerators. This makes the Nano suited for
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    �→'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family �→', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal' 'lkj_cholesky', �→'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', �→'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 空间。 10.6. 自注意力和位置编码 411 P = P[0, :, :].unsqueeze(0).unsqueeze(0) d2l.show_heatmaps(P, xlabel='Column (encoding dimension)', ylabel='Row (position)', figsize=(3.5, 4), cmap='Blues') 相对位置信息 除了捕获绝对
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    ones (m, 1) , x ] ; % Add a column of ones to x 2 From this point on, you will need to remember that the age values from your training data are actually in the second column of x. This will be important : , 2 ) , x∗ theta , ’− ’ ) % remember that x i s now a matrix % with 2 columnsand the second % column contains the time info legend ( ’ Training data ’ , ’ Linear r e g r e s s i o n ’ ) Note that
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    student’s scores on two exams. In your training data, the first column of your x array represents all Test 1 scores, and the second column represents all Test 2 scores, and the y vector uses “1” to label
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    多维数组可以进行连接,分段等多种操作。我们先来看 vstack(),hstack(),column_stack()函数。 > a = np.arange(3) > b = np.arange(10, 13) > v = np.vstack((a, b)) # 按第1轴连接数组 > h = np.hstack((a, b)) # 按第0轴连接数组 > c = np.column_stack((a, b)) # 按列连接多个一维数组
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data Frame)是一个二维带标记的数据结构,每列(column)数据类型 可以不同。我们可以将其当作电子表格或数据库表。 数据读入 pandas.read_csv 方法实现了快速读取 CSV(comma-separated) 文件到数据框的功能。 数据可视化库:matplotlib
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    a convolutional layer which receives a 3-channel input. Each individual 3x3 matrix is a kernel. A column of 3 kernels represents a channel. As you might notice, with such structured sparsity we can obtain
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesTechniques连接神经网络神经网神经网络实战pytorchIntroduction动手深度学习v2ExperimentLinearRegressionLogisticandNewtonMethod机器课程温州大学numpy使用总结TensorFlow快速入门房价预测AdvancedCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩