积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部英语(4)中文(简体)(4)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.070 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Brand Guidelines

    Don'ts Leverage the color palettes and keep things simple, ensuring there is a strong contrast between the symbol and the background. Don’t use colors that aren’t in the approved color palette or or primary brand color, please use it sparingly. We prefer to apply PyTorch Orange as a deliberate accent. To achieve the best AA compliance color contrast, PyTorch has a special color palette to best best serve these needs. When applying color in the digital environment; web, app, and social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 Experiment 6: K-Means

    538-pixel TIFF image named bird large.tiff. It looks like the picture below. In a straightforward 24-bit color representation of this image, each pixel is represented as three 8-bit numbers (ranging from 0 to K-means to reduce the color count to k = 16. That is, you will compute 16 colors as the cluster centroids and replace each pixel in the image with its nearest cluster centroid color. Because computing cluster the means will be initialized to the same color (i.e. black). Depending on your implementation, all of the pixels in the photo that are closest to that color may get assigned to one of the means, leaving
    0 码力 | 3 页 | 605.46 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    uint8) img = cv2.imdecode(img_array, cv2.IMREAD_COLOR) img = cv2.resize(img, (IMG_SIZE, IMG_SIZE), cv2.INTER_AREA) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(int) def show_image(image): # Display make better transformation choices. A few other commonly used techniques are contrast augmentation, color correction, hue augmentation, saturation, cutout, etc. Figure 3-7 shows a breakdown of the contributions
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")")) d2l.plt.axhline(y=0.167, color='black', linestyle='dashed') d2l.plt.gca().set_xlabel('Groups of experiments') d2l.plt.gca().set_ylabel('Estimated show_trace_2d(f, results): #@save """显示优化过程中2D变量的轨迹""" d2l.set_figsize() d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e') x1, x2 = torch.meshgrid(torch.arange(-5.5, 1.0, 0.1), torch.arange(-3.0, 1.0, 0.1), indexing='ij') (contrast)、饱和度(saturation)和色调(hue)。 color_aug = torchvision.transforms.ColorJitter( brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5) apply(img, color_aug) 结合多种图像增广方法 在实践中,我们将结合多种图像增广方法。比如
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    set_xlabel ( ’ count ’ ) ax . set_ylabel ( ’ cor rect (%) ’ ) plt . plot ( count , correctCurve , color=’ red ’ , linewidth =2.0 , l i n e s t y l e=’− ’ ) plt . show () 我们可以得到结果(我训练了很多次,有时候训练 1000 轮以后的正确率只有
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    --local-dir-use-symlinks False 然后你可以用如下命令运行模型: ./main -m qwen1_5-7b-chat-q5_k_m.gguf -n 512 --color -i -cml -f prompts/chat-with- �→qwen.txt -n 指的是要生成的最大 token 数量。这里还有其他超参数供你选择,并且你可以运行 ./main -h
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    flow_from_directory keras.preprocessing.image.flow_from_directory(directory, target_size=(256,256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, 图像,都将被包含在生成器中。更多细节,详见 此脚本。 • target_size: 整数元组 (height, width),默认:(256, 256)。所有的图像将被调整到的尺 寸。 • color_mode: “grayscale”, “rbg” 之一。默认:“rgb”。图像是否被转换成 1 或 3 个颜色通道。 • classes: 可选的类的子目录列表(例如 ['dogs', 'ca
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    gca(projection='3d') ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) # 绘制权值矩阵范围 surf
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
PyTorchBrandGuidelinesExperimentMeansEfficientDeepLearningBookEDLChapterTechniques动手深度学习v2连接神经网络神经网神经网络实战pytorchAI模型千问qwen中文文档Keras基于Python深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩