PyTorch Brand GuidelinesDon'ts Leverage the color palettes and keep things simple, ensuring there is a strong contrast between the symbol and the background. Don’t use colors that aren’t in the approved color palette or or primary brand color, please use it sparingly. We prefer to apply PyTorch Orange as a deliberate accent. To achieve the best AA compliance color contrast, PyTorch has a special color palette to best best serve these needs. When applying color in the digital environment; web, app, and social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK0 码力 | 12 页 | 34.16 MB | 1 年前3
Experiment 6: K-Means538-pixel TIFF image named bird large.tiff. It looks like the picture below. In a straightforward 24-bit color representation of this image, each pixel is represented as three 8-bit numbers (ranging from 0 to K-means to reduce the color count to k = 16. That is, you will compute 16 colors as the cluster centroids and replace each pixel in the image with its nearest cluster centroid color. Because computing cluster the means will be initialized to the same color (i.e. black). Depending on your implementation, all of the pixels in the photo that are closest to that color may get assigned to one of the means, leaving0 码力 | 3 页 | 605.46 KB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesuint8) img = cv2.imdecode(img_array, cv2.IMREAD_COLOR) img = cv2.resize(img, (IMG_SIZE, IMG_SIZE), cv2.INTER_AREA) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(int) def show_image(image): # Display make better transformation choices. A few other commonly used techniques are contrast augmentation, color correction, hue augmentation, saturation, cutout, etc. Figure 3-7 shows a breakdown of the contributions0 码力 | 56 页 | 18.93 MB | 1 年前3
动手学深度学习 v2.0plt.plot(estimates[:, i].numpy(), label=("P(die=" + str(i + 1) + ")")) d2l.plt.axhline(y=0.167, color='black', linestyle='dashed') d2l.plt.gca().set_xlabel('Groups of experiments') d2l.plt.gca().set_ylabel('Estimated show_trace_2d(f, results): #@save """显示优化过程中2D变量的轨迹""" d2l.set_figsize() d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e') x1, x2 = torch.meshgrid(torch.arange(-5.5, 1.0, 0.1), torch.arange(-3.0, 1.0, 0.1), indexing='ij') (contrast)、饱和度(saturation)和色调(hue)。 color_aug = torchvision.transforms.ColorJitter( brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5) apply(img, color_aug) 结合多种图像增广方法 在实践中,我们将结合多种图像增广方法。比如0 码力 | 797 页 | 29.45 MB | 1 年前3
全连接神经网络实战. pytorch 版set_xlabel ( ’ count ’ ) ax . set_ylabel ( ’ cor rect (%) ’ ) plt . plot ( count , correctCurve , color=’ red ’ , linewidth =2.0 , l i n e s t y l e=’− ’ ) plt . show () 我们可以得到结果(我训练了很多次,有时候训练 1000 轮以后的正确率只有0 码力 | 29 页 | 1.40 MB | 1 年前3
AI大模型千问 qwen 中文文档--local-dir-use-symlinks False 然后你可以用如下命令运行模型: ./main -m qwen1_5-7b-chat-q5_k_m.gguf -n 512 --color -i -cml -f prompts/chat-with- �→qwen.txt -n 指的是要生成的最大 token 数量。这里还有其他超参数供你选择,并且你可以运行 ./main -h0 码力 | 56 页 | 835.78 KB | 1 年前3
Keras: 基于 Python 的深度学习库flow_from_directory keras.preprocessing.image.flow_from_directory(directory, target_size=(256,256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, 图像,都将被包含在生成器中。更多细节,详见 此脚本。 • target_size: 整数元组 (height, width),默认:(256, 256)。所有的图像将被调整到的尺 寸。 • color_mode: “grayscale”, “rbg” 之一。默认:“rgb”。图像是否被转换成 1 或 3 个颜色通道。 • classes: 可选的类的子目录列表(例如 ['dogs', 'ca0 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112gca(projection='3d') ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) # 绘制权值矩阵范围 surf0 码力 | 439 页 | 29.91 MB | 1 年前3
共 8 条
- 1













