积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)机器学习(19)

语言

全部英语(12)中文(简体)(7)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 32. Train-Val-Test-交叉验证

    Train-Val-Test划分 主讲人:龙良曲 Recap How to detect Splitting Train Set Test Set For example 60K 10K test while train train test trade-off Overfitt ing For others judge ▪ Kaggle Train Set Test
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 63. 迁移学习-自定义数据集实战

    -networks-cnns/ Download ▪ 链接: https://pan.baidu.com/s/1V_ZJ7ufjUUFZwD2NHSNMFw ▪ 提取码:dsxl Splitting ▪ 皮卡丘:234 ▪ 超梦:239 ▪ 杰尼龟:223 ▪ 小火龙:238 ▪ 妙蛙种子:234 60%:138 20%:46 20%:46 4 steps ▪ Load data
    0 码力 | 16 页 | 719.15 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 05. 手写数字问题

    你 好, MNIST 主讲人:龙良曲 DL is NOT a Toy ▪ MNIST ▪ each number owns 7000 images ▪ train/test splitting: 60k vs 10k NO deep learning, just function mapping ▪ X = [v1, v2, …, v784] ▪ X: [1, dx] ▪ H1
    0 码力 | 10 页 | 569.56 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    learning follow right after. The quantization section delves into the implementation details using code samples. We finish with a hands-on project that will walk you through the process of applying quantization contains the symbol-code mapping is transmitted along with the encoded data. Figure 2-1: Huffman Encoding & Huffman Tree. Source When decoding the encoded data, we look up the code from the lookup table back. Since the codes are unique for each symbol (in fact, they are prefix codes: no code is a prefix of some other code, which eliminates ambiguity when decoding), we can easily construct the original sequence
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    English to Spanish translation model. Let’s dig deeper into each of these categories using examples and code samples. Label Invariant Transformations Label invariant transformations transform samples such These values are clipped to 255. We will discuss some examples of image transformations below. The code samples are provided to bridge the theory and practice gap. We have prepared a few helper functions: image_path = 'file:///whalefin.png' Now, let’s go through the various image transformations with code examples. Rotation rotates the image pixels around the center. It is parameterized by . A positive
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    /Miniconda3-latest-Linux-x86_64.sh • After Miniconda is installed: conda install pytorch -c pytorch Writing code • Up to you; feel free to use emacs, vim, PyCharm, etc. if you want. • Our recommendations: • Install: 1234:localhost:1234 __@__.cs.princeton.edu • First blank is username, second is hostname Jupyter Notebook VS Code • Install the Python extension. • ???????????? Install the Remote Development extension. • Python Jupyter notebooks by delimiting cells/sections with #%% • Debugging PyTorch code is just like debugging any other Python code: see Piazza @108 for info. Also try Jupyter Lab! Why talk about libraries
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 keras tutorial

     Core Layers  Convolution Layers  Pooling Layers  Recurrent Layers A simple python code to represent a neural network model using sequential model is as follows: from keras.models import your root directory under .keras/keras.json file. Keras backend module can be imported using below code: >>> from keras import backend as k If we are using default backend TensorFlow, then the below call and compute_output_shape completes the creating a customized layer. The final and complete code is as follows: from keras import backend as K from keras.layers import Layer Keras
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK or the listed Pantone code. For UI button elements, please reference “Color Variations communications. When using digitally, please use the hex code or RGB equivalent. When printing, please use CMYK or the listed Pantone code. 9 Brand Guidelines PyTorch Indigo (Digital+Print) social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK or the listed Pantone code. 9 Brand Guidelines PyTorch Super Light Gray (Digital+Print)
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    required libraries to start with. We will use the gzip python module for demonstrating compression. The code for this exercise is available as a Jupyter notebook here. %%capture import gzip import operator same number of weights pruned. Phew! It feels like we have gone through a lot of talk without much code! In chapter four, we trained a model to predict masks for pets to build snapchat like filters. Let’s prunable block using magnitude-based pruning. Note that the below code is in addition to the original segmentation project in chapter four. The code for this project is available as a Jupyter notebook here.
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" AutoTokenizer 借助 TextStreamer ,chat 的流式模式变得非常简单。下面我们将展示一个如何使用它的示例: ... # Reuse the code before `model.generate()` in the last code snippet from transformers import TextStreamer streamer = TextStreamer(tokenizer AutoTokenizer device = "cuda" # the device to load the model onto # Now you do not need to add "trust_remote_code=True" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto"
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
深度学习PyTorch入门实战32TrainValTest交叉验证63迁移定义数据定义数据05手写数字问题EfficientDeepLearningBookEDLChapterCompressionTechniquesTutorialkerastutorialBrandGuidelinesAdvancedAI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩