 华为云深度学习在文本分类中的实践-李明磊华为云深度学习在文本分类中的实践 华为 Cloud&AI 李明磊 3 2 3 1 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 4 文本分类介绍 内容:  买没几天就降价一点都不开心,闪存跑分就五百多点点 ---  外观漂亮音质不错,现在电子产品基本上都是华为的了 ---  汽车不错,省油,性价比高 ---  这个政策好啊,利国利民 --- 数据不均衡 预处理方法  上采样  下采样  SMOTE  数据增广 集成方法  SMOTEbagging 改损失函数  Focal loss “An Insight into Classification with Imbalanced Data: Empirical Results and Current Trends on Using Data Intrinsic0 码力 | 23 页 | 1.80 MB | 1 年前3 华为云深度学习在文本分类中的实践-李明磊华为云深度学习在文本分类中的实践 华为 Cloud&AI 李明磊 3 2 3 1 4 分类 算法 简史 深度 学习 架构 难点 应用 案例 目录 4 文本分类介绍 内容:  买没几天就降价一点都不开心,闪存跑分就五百多点点 ---  外观漂亮音质不错,现在电子产品基本上都是华为的了 ---  汽车不错,省油,性价比高 ---  这个政策好啊,利国利民 --- 数据不均衡 预处理方法  上采样  下采样  SMOTE  数据增广 集成方法  SMOTEbagging 改损失函数  Focal loss “An Insight into Classification with Imbalanced Data: Empirical Results and Current Trends on Using Data Intrinsic0 码力 | 23 页 | 1.80 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesefficient too. We hope that this project gave you an insight into how to use distillation for your tasks. The next section gives a quick insight into some of the research into distillation related methods0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesefficient too. We hope that this project gave you an insight into how to use distillation for your tasks. The next section gives a quick insight into some of the research into distillation related methods0 码力 | 56 页 | 18.93 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesof the loss function is changing with respect to and . The second derivative gives us a clearer insight into how important might be to minimize the loss. Since computing pairwise second-derivatives for0 码力 | 34 页 | 3.18 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesof the loss function is changing with respect to and . The second derivative gives us a clearer insight into how important might be to minimize the loss. Since computing pairwise second-derivatives for0 码力 | 34 页 | 3.18 MB | 1 年前3
 PyTorch Release NotesPreparing to use NVIDIA Containers Getting Started Guide. ‣ For non-DGX users, see NVIDIA ® GPU Cloud ™ (NGC) container registry installation documentation based on your platform. ‣ Ensure that you system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was provided by a Cloud Service Provider, or the software that you installed to prepare to run NGC containers shipped in /workspace/nvidia-examples). You can obtain the models from Github or the NVIDIA GPU Cloud (NGC) instead. Some Python packages that were included in previous containers to support these example0 码力 | 365 页 | 2.94 MB | 1 年前3 PyTorch Release NotesPreparing to use NVIDIA Containers Getting Started Guide. ‣ For non-DGX users, see NVIDIA ® GPU Cloud ™ (NGC) container registry installation documentation based on your platform. ‣ Ensure that you system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was provided by a Cloud Service Provider, or the software that you installed to prepare to run NGC containers shipped in /workspace/nvidia-examples). You can obtain the models from Github or the NVIDIA GPU Cloud (NGC) instead. Some Python packages that were included in previous containers to support these example0 码力 | 365 页 | 2.94 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical ReviewThe original paper reports BERT-Base requiring 4 Cloud TPU Pods (4 chips each, total 16 chips) over 4 days for a total of 1,536 TPU hours. Each Cloud TPU chip is priced at $3.22 / hr6, which means the the training would take ~ 1536 * 3.22 = $4,945.92. BERT-Large requires 16 Cloud TPU Pods for 4 days, which turns out to be 6,144 TPU hours and $19,783.68 to train. Other pre-trained models can be a couple 68_A-12/4 7 GPU pricing source: https://cloud.google.com/compute/gpus-pricing. Numbers reported from October 2022. 6 Cloud TPU pricing source: https://cloud.google.com/tpu/pricing. Numbers reported from0 码力 | 31 页 | 4.03 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical ReviewThe original paper reports BERT-Base requiring 4 Cloud TPU Pods (4 chips each, total 16 chips) over 4 days for a total of 1,536 TPU hours. Each Cloud TPU chip is priced at $3.22 / hr6, which means the the training would take ~ 1536 * 3.22 = $4,945.92. BERT-Large requires 16 Cloud TPU Pods for 4 days, which turns out to be 6,144 TPU hours and $19,783.68 to train. Other pre-trained models can be a couple 68_A-12/4 7 GPU pricing source: https://cloud.google.com/compute/gpus-pricing. Numbers reported from October 2022. 6 Cloud TPU pricing source: https://cloud.google.com/tpu/pricing. Numbers reported from0 码力 | 31 页 | 4.03 MB | 1 年前3
 机器学习课程-温州大学-01深度学习-引言(Tensor Processing Units) Google Cloud TPU. https://cloud.google.com/tpu NVIDIA V100 TPU v2 TPU v3 Hardware Architecture NVIDIA Volta GPU Google Cloud TPU Google Cloud TPU Memory 16GB / 32GB 64GB 128GB DL: 112 TFLOPS 180 TFLOPS 420 TFLOPS 深度学习的硬件 27 • 提问:训练一个模型需要多大开销? • 以训练 BERT-large 模型为例, 16 Cloud TPUs = 16 * 4.5 = 72 USD / hour One-day cost = 72 * 24 = 1,728 USD Four-day cost = 1,728 USD *0 码力 | 80 页 | 5.38 MB | 1 年前3 机器学习课程-温州大学-01深度学习-引言(Tensor Processing Units) Google Cloud TPU. https://cloud.google.com/tpu NVIDIA V100 TPU v2 TPU v3 Hardware Architecture NVIDIA Volta GPU Google Cloud TPU Google Cloud TPU Memory 16GB / 32GB 64GB 128GB DL: 112 TFLOPS 180 TFLOPS 420 TFLOPS 深度学习的硬件 27 • 提问:训练一个模型需要多大开销? • 以训练 BERT-large 模型为例, 16 Cloud TPUs = 16 * 4.5 = 72 USD / hour One-day cost = 72 * 24 = 1,728 USD Four-day cost = 1,728 USD *0 码力 | 80 页 | 5.38 MB | 1 年前3
 李东亮:云端图像技术的深度学习模型与应用SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing SACC2017 视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution Frame Predictor 检测 RNN SACC2017 360小水滴摄像机:视觉大不同 小水滴·360智能摄像机 视觉大不同 你不在家时有它在 通过语音人工智能实现求救与留言功能 Cloud-API 每天调用1.5亿次!2000QPS! SACC2017 系统框架 n 根据业务需求,对图像人脸进行识别,将结果推送到业务端 n 基于深度学习的准确的人脸检测、特征抽取 n 人脸检测占用95%计算资源 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing SACC2017 图像技术的三个核心难点>>小、快、准 模型 数据 工程 模型缩减 结构演进 SACC2017 单尺度卷积核 多尺度卷积核 视觉感知的三个核心难点>>小、快、准0 码力 | 26 页 | 3.69 MB | 1 年前3 李东亮:云端图像技术的深度学习模型与应用SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing SACC2017 视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution Frame Predictor 检测 RNN SACC2017 360小水滴摄像机:视觉大不同 小水滴·360智能摄像机 视觉大不同 你不在家时有它在 通过语音人工智能实现求救与留言功能 Cloud-API 每天调用1.5亿次!2000QPS! SACC2017 系统框架 n 根据业务需求,对图像人脸进行识别,将结果推送到业务端 n 基于深度学习的准确的人脸检测、特征抽取 n 人脸检测占用95%计算资源 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing SACC2017 图像技术的三个核心难点>>小、快、准 模型 数据 工程 模型缩减 结构演进 SACC2017 单尺度卷积核 多尺度卷积核 视觉感知的三个核心难点>>小、快、准0 码力 | 26 页 | 3.69 MB | 1 年前3
 keras tutorial................................................................................... 6 Anaconda Cloud ................................................................................................. run the below command to quit the environment: deactivate Anaconda Cloud We believe that you have installed anaconda cloud on your machine. If anaconda is not installed, then visit the official0 码力 | 98 页 | 1.57 MB | 1 年前3 keras tutorial................................................................................... 6 Anaconda Cloud ................................................................................................. run the below command to quit the environment: deactivate Anaconda Cloud We believe that you have installed anaconda cloud on your machine. If anaconda is not installed, then visit the official0 码力 | 98 页 | 1.57 MB | 1 年前3
 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒AI+智慧城市 2015-2017 l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 -0 码力 | 23 页 | 9.26 MB | 1 年前3 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒AI+智慧城市 2015-2017 l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 -0 码力 | 23 页 | 9.26 MB | 1 年前3
 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱相关技术正在进⼊推荐领域 问题1. 推荐链路的漏⽃ 是对资源的巨⼤浪费 问题2. 结果利⽤ 不充分,响应不 够快 [2021] MC2 -SF: Slow-Fast Learning for Mobile-Cloud Collaborative Recommendation 问题3. ⼏⼗个场 景,独⽴链路 总结 � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离线训练, 在线推理服务和持续上线0 码力 | 22 页 | 6.76 MB | 1 年前3 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱相关技术正在进⼊推荐领域 问题1. 推荐链路的漏⽃ 是对资源的巨⼤浪费 问题2. 结果利⽤ 不充分,响应不 够快 [2021] MC2 -SF: Slow-Fast Learning for Mobile-Cloud Collaborative Recommendation 问题3. ⼏⼗个场 景,独⽴链路 总结 � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离线训练, 在线推理服务和持续上线0 码力 | 22 页 | 6.76 MB | 1 年前3
共 15 条
- 1
- 2













