积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(8)中文(简体)(5)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.068 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } 它包含以下字段: • 图 像 处 理 层 和 实 用 程 序 所 使 用 的 默 认 值 图 像 数 据 格 式 (channel_last 或 channels_first)。 • 用于防止在某些操作中被零除的 input_shape 参数(整数元组,不包含 样本表示的轴) ,例如,input_shape=(128, 128, 3) 表示 128x128 RGB 图像,在 data_format="channels_last" 时。 参数 • filters: 整数,输出空间的维度(即卷积中滤波器的输出数量)。 • kernel_size: 一个整数,或者 2 个整数表示的元组或列表,指明 2D 卷积窗口的宽度和高度。 (大小写敏感)。 • data_format: 字符串,channels_last (默认) 或 channels_first 之一,表示输入中 维度的顺序。channels_last 对应输入尺寸为 (batch, height, width, channels), channels_first 对应输入尺寸为 (batch, channels, height, width)。它默认为从 Keras
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    that can manipulate the structure of a network. The number of dense units, number of convolution channels or the size of convolution kernels can sometimes be 4 Jaderberg, Max, et al. "Population based rolling_accuracies_window=20, max_branch_length=2, blocks=5, cells=2, initial_width=1, initial_channels=4 ) STATE_SPACE = [ dict(name='hidden_state', values=list(range(2)), count=2), dict( name=primitives """ def __init__(self, stride=1, channels=64): self.channels = channels self.stride = stride self.kwargs = dict(strides=(1, 1), padding='same') def repair_channels(self, inp): """ This method sends
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 keras tutorial

    home directory inside and go to .keras/keras.json. keras.json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } Here, = theano in keras.json file. It is described below: keras.json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "theano" } Now save your specified below: >>> k.backend() 'tensorflow' >>> k.epsilon() 1e-07 >>> k.image_data_format() 'channels_last' >>> k.floatx() 'float32' Let us understand some of the significant backend functions
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数 量out_channels. import torch from torch import nn from d2l import torch as d2l def vgg_block(num_convs, in_channels, out_channels): (continues on next page) in range(num_convs): layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) conv_blks = [] in_channels = 1 # 卷积层部分 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential(
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    compatible with 2-D convolutional layers which expect one dimension for the channels. Typically with an RGB image there are 3 channels, but since there is a grayscale image there is only one channel which the helps in making them lie between [-1.0, 1.0]. x /= 127.5 x -= 1.0 # Add one dimension for the channels. x = np.expand_dims(x, 3) return x def load_data(ds=tf.keras.datasets.mnist): """Returns the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 38. 卷积神经网络

    org/an-intuitive-guide-to-convolutional-neural- networks-260c2de0a050 Notation Input_channels: Kernel_channels: 2 ch Kernel_size: Stride: Padding: Multi-Kernels https://skymind.ai/wiki/convolutional-network
    0 码力 | 14 页 | 1.14 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    TensorFlow” Try it 输入与输出数据处理 输入数据处理 图像处理:RGB图 -> 灰度图 -> 规范化数据 输入数据处理 适配 Keras 图像数据格式:“channels_frist” 或 “channels_last” 输出数据处理 One-hot 编码:验证码转向量 输出数据处理 解码:模型输出向量转验证码 argmax “Hello TensorFlow” Try
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    removed the first neuron. Now, consider a convolution layer with 3x3 sized filters and 3 input channels. At 1-D granularity, a vector of weights is pruned. An entire kernel is pruned when the pruning computation. In the case of this convolutional layer, we can drop rows, columns, kernels, and even whole channels. Libraries like XNNPACK3,4 can help accelerate networks on a variety of web, mobile, and embedded
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    m) where h, w represent the spatial dimensions (height and width) and m is the number of input channels. Figure 4-20 demonstrates a regular convolution operation over this input using n kernels of dimensions with a single stride produces an output with dimensions (h, w, n) where n is the number of output channels. This operation requires h x w x n x dk x dk x m operations. Figure 4-20: Depiction of input, output
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    recomputes the pixel values. The rotation of an RGB image of 100x100 requires at least 100x100x3 (3 channels) computations. Two transformations would require 2x100x100x3 computations. When the transformations path, brightness=2) Channel Intensity Shift shifts the RGB channel values uniformly across all channels. where c represents a channel and s is the shift amount. As opposed to the brightness transformation
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
Keras基于Python深度学习EfficientDeepLearningBookEDLChapterAutomationkerastutorial动手v2CompressionTechniquesPyTorch入门实战38卷积神经网络神经网神经网络TensorFlow快速验证验证码识别AdvancedArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩