积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(27)机器学习(27)

语言

全部中文(简体)(14)英语(13)

格式

全部PDF文档 PDF(27)
 
本次搜索耗时 0.071 秒,为您找到相关结果约 27 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    animals. The higher the value, the more that particular feature represents the given animal. In Table 4-1 we manually assigned values for the cute and dangerous features for six animals2, and we are calling cat (0.95, 0.05) snake (0.01, 0.9) bear (0.5, 0.95) raccoon (0.5, 0.5) mouse (0.01, 0.2) Table 4-1: A table consisting of embeddings of the various animals, using two features (cute and dangerous), each take a value between 0.0 and 1.0. We manually picked these values for illustration. Going through table 4-1, cat and dog have high values for the ‘cute’ feature, and low values for the ‘dangerous’ feature
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    familiarize ourselves with these techniques later in this chapter. Table 3-1 presents a concise summary of both, sample and label efficiency. Table 3-1: A quick summary of sample and label efficiencies. Both Using learning techniques to build smaller and faster efficient models Overall, as summarized in table 3-1, improving sample efficiency enables faster model training, and label efficiency is useful to scenario which illustrates how learning techniques are leveraged to reduce the model footprint. Table 3-2 shows a comparison of vanilla models (without the learning techniques) with the models that employ
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    aggregate, this would be better than encoding each symbol with the same number of bits. The lookup table (figure 2-1 middle) that contains the symbol-code mapping is transmitted along with the encoded data Encoding & Huffman Tree. Source When decoding the encoded data, we look up the code from the lookup table to retrieve the symbols back. Since the codes are unique for each symbol (in fact, they are prefix we can easily construct the original sequence of symbols from the encoded sequence and the lookup table. Refer the wikipedia article on arithmetic coding to learn about lossless coding schemes. The lossy
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    .1), (20, .001), (50, .1), ] The create_model() function creates a single hidden layer model whose size is determined by the input size parameter. def create_model(size): return tf.keras.Sequential([ hyperparameters. search_results = [] for trial_id, (layer_size, learning_rate) in enumerate(S): model = create_model(size=layer_size) opt = optimizers.SGD(learning_rate=learning_rate) losses = [] for iteration r is smaller and vice-versa to ensure that each bracket gets a comparable budget. Take a look at table 7-1 which shows the changes in the number of configurations as the iterations progress for each bracket
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    weights to zero. def sparsify_smallest(w, sparsity_rate): w = w.copy() w_1d = np.reshape(w, (-1)) # Create a list of indices sorted by the absolute magnitude of the weights. w_1d_sorted_indices = np.argsort(np compress(w.tobytes()) return compressed_w To demonstrate the effect of sparsity on compression, we create a sample 2D weight matrix with randomly initialized float values. We also define a sparsity_rate pets to build snapchat like filters. Let’s continue on the same project to demonstrate how we can create a pruned network without significant drop in accuracy in the next section. 4 Elsen, E., Dukhan,
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    RN-08516-001_v23.07 | July 2023 PyTorch Release Notes PyTorch RN-08516-001_v23.07 | ii Table of Contents Chapter 1. PyTorch Overview......................................................... Conda package manager was installed in /opt/conda. NVIDIA PyTorch Container Versions The following table shows what versions of Ubuntu, CUDA, PyTorch, and TensorRT are supported in each of the NVIDIA containers Conda package manager was installed in /opt/conda. NVIDIA PyTorch Container Versions The following table shows what versions of Ubuntu, CUDA, PyTorch, and TensorRT are supported in each of the NVIDIA containers
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    please notify us at contact@tutorialspoint.com Keras iii Table of Contents About the Tutorial ................................................................ ........................................................................................... ii Table of Contents ..................................................................................... ........................................................................................... 63 Create a Multi-Layer Perceptron ANN ...................................................................
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.1.4 make_sampling_table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 文本预处理 . . . . . . . . . . . RuntimeError: 如果模型从未编译。 例 def generate_arrays_from_file(path): while 1: f = open(path) for line in f: # create Numpy arrays of input data # and labels, from each line in the file x, y = process_line(line) output_dim = output_dim super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): # Create a trainable weight variable for this layer. self.kernel = self.add_weight(name='kernel', shape=(input_shape[1]
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    在模型端,需要创建写入监控数据的 Summary 类,并在需要的时候写入监控数据。首 先通过 tf.summary.create_file_writer 创建监控对象类实例,并指定监控数据的写入目录,代 码如下: # 创建监控类,监控数据将写入 log_dir 目录 summary_writer = tf.summary.create_file_writer(log_dir) 我们以监控误差数据和可视化图片数据为例,介绍如何写入监控数据。在前向计算完 在模型端,需要创建写入监控数据的 Summary 类,并在需要的时候写入监控数据。首 先通过 tf.summary.create_file_writer 创建监控对象类实例,并指定监控数据的写入目录,代 码如下: # 创建监控类,监控数据将写入 log_dir 目录 summary_writer = tf.summary.create_file_writer(log_dir) 我们以监控误差数据和可视化图片数据为例,介绍如何写入监控数据。在前向计算完 vocab,?) Embedding 层实现起来非常简单,构建一个 shape 为[?vocab,?]的查询表对象 table,对 预览版202112 11.1 序列表示方法 3 于任意的单词编号?,只需要查询到对应位置上的向量并返回即可: ? = table[?] Embedding 层是可训练的,它可放置在神经网络之前,完成单词到向量的转换,得到的表 示向量可以继续
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    words, the models generalized well). As a result of this trailblazing work, there has been a race to create deeper networks with an ever larger number of parameters and increased complexity. In Computer Vision leads to a direct increase in model size and memory consumption. Figure 1-16: A regular embedding table on the left with an embedding for each token. Hashing Trick on the right, where multiple tokens map
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
共 27 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesTechniquesCompressionAutomationAdvancedPyTorchReleaseNoteskerastutorialKeras基于Python深度学习深度学习Introduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩