积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)机器学习(10)

语言

全部英语(5)中文(简体)(5)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.051 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    The more that you learn, the more places you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses introduction to sample efficiency and label efficiency, the two criteria that we have picked to benchmark learning techniques. It is followed by a short discussion on exchanging model quality and model same breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    https://github.com/zalandoresearch/fashion-mnist Why we need Fashion MNIST Benchmark on original MNIST Benchmark on Fashion MNIST Benchmark Side-by-side Fashion MNIST dataset 使用 TensorFlow 2 训练分类网络 Get Fashion
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    �������������WKFIl�� ���k��LeS� tP�a���o� 3E9��� �����������WK �tP�a����o� FDDB: Face Detection Data Set and Benchmark �������A7� BBB�2��������4���5��1�7:�4�����8 Li����p����������F�u�rn�S��p�c�ef���b��L i��osv���� ���� �Li� ���� ��a�dt�lUW ��.:7A4��7�D��5�,����2���4��� � .,�--Fh�v WIDER FACE: A Face Detection Benchmark �EE�������67 �: �F�� :9F ����CA�:�ED�5.�,2�6�:� �������� � kj�l�sm����c���ptbVkj����R�kj� 5.�
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    为了证明通过编译获得了性能改进,我们比较了混合编程前后执行net(x)所需的时间。让我们先定义一个度 量时间的类,它在本章中在衡量(和改进)模型性能时将非常有用。 #@save class Benchmark: """用于测量运行时间""" def __init__(self, description='Done'): self.description = description def __enter__(self): hscript,一次不使用torchscript。 net = get_net() with Benchmark('无torchscript'): for i in range(1000): net(x) net = torch.jit.script(net) with Benchmark('有torchscript'): for i in range(1000): net(x) 无torchscript: device=device) b = torch.mm(a, a) with d2l.Benchmark('numpy'): for _ in range(10): a = numpy.random.normal(size=(1000, 1000)) b = numpy.dot(a, a) with d2l.Benchmark('torch'): for _ in range(10): a = torch
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 24. Logistic Regression

    ▪ Goal: ???? = ? ▪ Approach: minimize ????(????, ?) ▪ For classification: ▪ Goal: maximize benchmark, e.g. accuracy ▪ Approach1: minimize ????(?? ? ? , ??(?|?)) ▪ Approach2: minimize ??????????(
    0 码力 | 12 页 | 798.46 KB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    Network Architecture Input Naïve Regression Expert-retouched Ablation Study Motivation: The benchmark dataset is collected for enhancing general photos instead of underexposed photos, and contains
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    significantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE) benchmark. Subsequently models like BERT4 and GPT5 models have demonstrated additional improvements on NLP-related
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    language modeling. Their generated models exhibited strong performance on the image and language benchmark datasets. Moreover, their NAS model could generate variable depth child networks. Figure 7-4 shows
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    into. ) We hope that you can try out SAM on your own models, which may differ from the typical benchmark datasets and models used for comparing such techniques. Similarly, we might find that techniques
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    an unexpected memory thrashing when `torch.backends.cudnn.benchmark = True` is used. The performance can be restored by disabling `cudnn.benchmark` or by reducing the memory usage. PyTorch RN-08516-001_v23 cause a long startup time or a hang. In these cases, disbale autotuning using `torch.backends.cudnn.benchmark = False`. ‣ GNMTv2 inference performance regression of up to 50% due to an MKL slowdown. Other
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesTensorFlow快速入门实战上手训练模型部署服务人脸识别人脸识别动手深度学习v2PyTorch24LogisticRegression图像视频处理技术沈小勇IntroductionAutomationAdvancedTechnicalReviewReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩