 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesThe more that you learn, the more places you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses introduction to sample efficiency and label efficiency, the two criteria that we have picked to benchmark learning techniques. It is followed by a short discussion on exchanging model quality and model same breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesThe more that you learn, the more places you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses introduction to sample efficiency and label efficiency, the two criteria that we have picked to benchmark learning techniques. It is followed by a short discussion on exchanging model quality and model same breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency0 码力 | 56 页 | 18.93 MB | 1 年前3
 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务https://github.com/zalandoresearch/fashion-mnist Why we need Fashion MNIST Benchmark on original MNIST Benchmark on Fashion MNIST Benchmark Side-by-side Fashion MNIST dataset 使用 TensorFlow 2 训练分类网络 Get Fashion0 码力 | 52 页 | 7.99 MB | 1 年前3 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务https://github.com/zalandoresearch/fashion-mnist Why we need Fashion MNIST Benchmark on original MNIST Benchmark on Fashion MNIST Benchmark Side-by-side Fashion MNIST dataset 使用 TensorFlow 2 训练分类网络 Get Fashion0 码力 | 52 页 | 7.99 MB | 1 年前3
 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别�������������WKFIl�� ���k��LeS� tP�a���o� 3E9��� �����������WK �tP�a����o� FDDB: Face Detection Data Set and Benchmark �������A7� BBB�2��������4���5��1�7:�4�����8 Li����p����������F�u�rn�S��p�c�ef���b��L i��osv���� ���� �Li� ���� ��a�dt�lUW ��.:7A4��7�D��5�,����2���4��� � .,�--Fh�v WIDER FACE: A Face Detection Benchmark �EE�������67 �: �F�� :9F ����CA�:�ED�5.�,2�6�:� �������� � kj�l�sm����c���ptbVkj����R�kj� 5.�0 码力 | 81 页 | 12.64 MB | 1 年前3 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别�������������WKFIl�� ���k��LeS� tP�a���o� 3E9��� �����������WK �tP�a����o� FDDB: Face Detection Data Set and Benchmark �������A7� BBB�2��������4���5��1�7:�4�����8 Li����p����������F�u�rn�S��p�c�ef���b��L i��osv���� ���� �Li� ���� ��a�dt�lUW ��.:7A4��7�D��5�,����2���4��� � .,�--Fh�v WIDER FACE: A Face Detection Benchmark �EE�������67 �: �F�� :9F ����CA�:�ED�5.�,2�6�:� �������� � kj�l�sm����c���ptbVkj����R�kj� 5.�0 码力 | 81 页 | 12.64 MB | 1 年前3
 动手学深度学习 v2.0为了证明通过编译获得了性能改进,我们比较了混合编程前后执行net(x)所需的时间。让我们先定义一个度 量时间的类,它在本章中在衡量(和改进)模型性能时将非常有用。 #@save class Benchmark: """用于测量运行时间""" def __init__(self, description='Done'): self.description = description def __enter__(self): hscript,一次不使用torchscript。 net = get_net() with Benchmark('无torchscript'): for i in range(1000): net(x) net = torch.jit.script(net) with Benchmark('有torchscript'): for i in range(1000): net(x) 无torchscript: device=device) b = torch.mm(a, a) with d2l.Benchmark('numpy'): for _ in range(10): a = numpy.random.normal(size=(1000, 1000)) b = numpy.dot(a, a) with d2l.Benchmark('torch'): for _ in range(10): a = torch0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0为了证明通过编译获得了性能改进,我们比较了混合编程前后执行net(x)所需的时间。让我们先定义一个度 量时间的类,它在本章中在衡量(和改进)模型性能时将非常有用。 #@save class Benchmark: """用于测量运行时间""" def __init__(self, description='Done'): self.description = description def __enter__(self): hscript,一次不使用torchscript。 net = get_net() with Benchmark('无torchscript'): for i in range(1000): net(x) net = torch.jit.script(net) with Benchmark('有torchscript'): for i in range(1000): net(x) 无torchscript: device=device) b = torch.mm(a, a) with d2l.Benchmark('numpy'): for _ in range(10): a = numpy.random.normal(size=(1000, 1000)) b = numpy.dot(a, a) with d2l.Benchmark('torch'): for _ in range(10): a = torch0 码力 | 797 页 | 29.45 MB | 1 年前3
 深度学习与PyTorch入门实战 - 24. Logistic Regression
▪ Goal: ???? = ? ▪ Approach: minimize ????(????, ?) ▪ For classification: ▪ Goal: maximize benchmark, e.g. accuracy ▪ Approach1: minimize ????(?? ? ? , ??(?|?)) ▪ Approach2: minimize ??????????(0 码力 | 12 页 | 798.46 KB | 1 年前3 深度学习与PyTorch入门实战 - 24. Logistic Regression
▪ Goal: ???? = ? ▪ Approach: minimize ????(????, ?) ▪ For classification: ▪ Goal: maximize benchmark, e.g. accuracy ▪ Approach1: minimize ????(?? ? ? , ??(?|?)) ▪ Approach2: minimize ??????????(0 码力 | 12 页 | 798.46 KB | 1 年前3
 深度学习下的图像视频处理技术-沈小勇Network Architecture Input Naïve Regression Expert-retouched Ablation Study Motivation: The benchmark dataset is collected for enhancing general photos instead of underexposed photos, and contains0 码力 | 121 页 | 37.75 MB | 1 年前3 深度学习下的图像视频处理技术-沈小勇Network Architecture Input Naïve Regression Expert-retouched Ablation Study Motivation: The benchmark dataset is collected for enhancing general photos instead of underexposed photos, and contains0 码力 | 121 页 | 37.75 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionsignificantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE) benchmark. Subsequently models like BERT4 and GPT5 models have demonstrated additional improvements on NLP-related0 码力 | 21 页 | 3.17 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionsignificantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE) benchmark. Subsequently models like BERT4 and GPT5 models have demonstrated additional improvements on NLP-related0 码力 | 21 页 | 3.17 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationlanguage modeling. Their generated models exhibited strong performance on the image and language benchmark datasets. Moreover, their NAS model could generate variable depth child networks. Figure 7-4 shows0 码力 | 33 页 | 2.48 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationlanguage modeling. Their generated models exhibited strong performance on the image and language benchmark datasets. Moreover, their NAS model could generate variable depth child networks. Figure 7-4 shows0 码力 | 33 页 | 2.48 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewinto. ) We hope that you can try out SAM on your own models, which may differ from the typical benchmark datasets and models used for comparing such techniques. Similarly, we might find that techniques0 码力 | 31 页 | 4.03 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewinto. ) We hope that you can try out SAM on your own models, which may differ from the typical benchmark datasets and models used for comparing such techniques. Similarly, we might find that techniques0 码力 | 31 页 | 4.03 MB | 1 年前3
 PyTorch Release Notesan unexpected memory thrashing when `torch.backends.cudnn.benchmark = True` is used. The performance can be restored by disabling `cudnn.benchmark` or by reducing the memory usage. PyTorch RN-08516-001_v23 cause a long startup time or a hang. In these cases, disbale autotuning using `torch.backends.cudnn.benchmark = False`. ‣ GNMTv2 inference performance regression of up to 50% due to an MKL slowdown. Other0 码力 | 365 页 | 2.94 MB | 1 年前3 PyTorch Release Notesan unexpected memory thrashing when `torch.backends.cudnn.benchmark = True` is used. The performance can be restored by disabling `cudnn.benchmark` or by reducing the memory usage. PyTorch RN-08516-001_v23 cause a long startup time or a hang. In these cases, disbale autotuning using `torch.backends.cudnn.benchmark = False`. ‣ GNMTv2 inference performance regression of up to 50% due to an MKL slowdown. Other0 码力 | 365 页 | 2.94 MB | 1 年前3
共 10 条
- 1













