积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(9)

语言

全部英语(7)中文(简体)(2)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.054 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    single input layer, one or more hidden layer and finally an output layer. A layer consists of a collection of perceptron. Input layer is basically one or more features of the input data. Every hidden Once data is collected, we can prepare the model and train it by using the collected data. Data collection is one of the most difficult phase of machine learning. Keras provides a special module, datasets dataset Let us use the MNIST database of handwritten digits (or minst) as our input. minst is a collection of 60,000, 28x28 grayscale images. It contains 10 digits. It also contains 10,000 test images
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular Transformer architectures and an automatic mixed precision-like training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular Transformer architectures and an automatic mixed precision-like training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular Transformer architectures and an automatic mixed precision-like
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Bureau employees and the American high school students. The creators went through a tedious sample collection and digitization process. It would cost substantial labor, time and money to collect more samples and more than 500 individuals with three samples. As opposed to the previous examples, whale data collection is trickier. The data acquisition difficulties inspired researchers to invest in developing techniques learnings and measure their impact. We will use the oxford_flowers102 dataset from tensorflow. It is a collection of 102 commonly occurring flowers in the UK (hence, the name). Instead of training a model from
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    deploy models belonging to the pareto-frontier. Our goal with efficient deep learning is to have a collection of algorithms, techniques, tools, and infrastructure that work together to allow users to train law6 in Europe. Hence, efficiently training models with a fraction of the data means lesser data-collection required. Similarly, enabling on-device models would imply that the model inference can be run Augmentation. It is a nifty way of addressing the scarcity of labeled data during training. It is a collection of transformations that can be applied on the given input such that it is trivial to compute the
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    optimizations to make it efficient. Also consider going through the work by Izsak et al.11 which presents a collection of tweaks to achieve BERT-like quality but with a budget of 24 GPU hours. Getting back to this provide depth by describing self-supervised learning in detail, and breadth by briefly introducing a collection of other simple techniques that you can incorporate in your model training. We explored self-supervised solve that given task without the need for the model weights to be updated. We also went over a collection of a few other learning techniques that you can incorporate in your regular model training. The
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    To summarize, compression techniques help to achieve an efficient representation of a layer or a collection of layers, such that it meets the desired tradeoff goals. In the next section we introduce Quantization variable x which takes a 32-bit floating point value in the range [-10.0, 10.0]. We need to transmit a collection (vector) of these variables over an expensive communication channel. Can we use quantization to deep learning field. The MNIST dataset was assembled and processed by Yann LeCun et al. It is a collection of digits from 0-9 written by approximately 250 different writers including high-school students
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    embedding_dim)) Indeed, that is the case. It all looks good! 14 TFHub (https://tfhub.dev/) is a collection of pre-trained checkpoints of models and layers that you can directly use in your model. There learnings about RNN and attention to classify the news articles in AGNews25 dataset. AGNews is a collection of news articles where each article belongs to one of the following four classes: Sci/Tech, World
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    ModelScope • Qwen1.5 Collection 加入社区,加入 Discord 和 微信群 。很期待见到你们! 快速开始 1 Qwen 2 快速开始 CHAPTER1 文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 transformers
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword arguments: 82 2. 预备知识 out (Tensor, optional): the output tensor
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
kerastutorialPyTorchReleaseNotesEfficientDeepLearningBookEDLChapterTechniquesIntroductionAdvancedTechnicalReviewCompressionArchitecturesAI模型千问qwen中文文档动手深度学习v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩