keras tutorial..................................................... 55 Keras v Functional API .................................................................................................. computing. CNTK is deep learning framework developed by Microsoft. It uses libraries such as Python, C#, C++ or standalone machine learning toolkits. Theano and TensorFlow are very powerful libraries but techniques to make high level neural network API easier and more performant. It supports the following features: Consistent, simple and extensible API. Minimal structure - easy to achieve the0 码力 | 98 页 | 1.57 MB | 1 年前3
AI大模型千问 qwen 中文文档下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key, b base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content":0 码力 | 56 页 | 835.78 KB | 1 年前3
PyTorch Release Noteshighly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ A preview of Torch-TensorRT (1.4.0dev0) is now integration for PyTorch and brings the capabilities of TensorRT directly to Torch in one line Python and C++ APIs. ‣ Starting with the 22.05 release, the PyTorch container is available for the Arm SBSA platform Preview 1.13.0a0+340c412 22.05 NVIDIA CUDA 11.7.0 1.12.0a0+8a1a93a TensorRT 8.2.5 22.04 NVIDIA CUDA 11.6.2 1.12.0a0+bd13bc6 TensorRT 8.2.4.2 22.03 20.04 NVIDIA CUDA 11.6.1 1.12.0a0+2c916ef TensorRT0 码力 | 365 页 | 2.94 MB | 1 年前3
Keras: 基于 Python 的深度学习库LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0动手学深度学习 Release 2.0.0 Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola Aug 18, 2023 目录 前言 1 安装 9 符号 13 1 引言 17 2 预备知识 39 2.1 数据操作 . . . . . . . . . . . . . . . . . . . . . . . . 3 提交主要更改 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 16.6 d2l API 文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 16.6 些情况下,我们通常会提供两个版本的示例:一个是我们从零开始实现一切,仅依赖张量操作和自动微分; 另一个是更实际的示例,我们使用深度学习框架的高级API编写简洁的代码。一旦我们教了您一些组件是如 何工作的,我们就可以在随后的教程中使用高级API了。 内容和结构 全书大致可分为三个部分,在 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节0 码力 | 797 页 | 29.45 MB | 1 年前3
《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别�a�������������� 1��a���2��a�� �3��a����� ����������a��k���������������LBP, Gabor����� �����������c���J�������������������a��� �������a����� ����“��”���� ���������������������� ��GPU������������ ������ �t������i 6000 �����h�����vh�i 300 �u��300 ���� ���ha��c��d����t���LFW���s�d�����p� 2013�:�����������f�������l��+�c��� 2014�:����������c��� 2014��s��c��+���.����tw����/e������������� ������������� • ������ ���lfT��37�7,.�c�o � ������������lo������l�����������������l����� ������o 06645���888��5�6�7����12�:832/�96/��.5� CASIA-WebFace ������������� mke������F������g�������r��AF���� �b���mkeC������C��b���������S���i������W�0 码力 | 81 页 | 12.64 MB | 1 年前3
《TensorFlow 2项目进阶实战》3-方案设计篇:如何设计可落地的AI解决方案流水线 • 方案交付:支持在线识别和API调用的 AI SaaS 目录 行业背景:AI新零售是什么? 人类零售演进史 ——《C时代 新零售——阿里研究院新零售研究报告》 中国零售发展处于初级阶段 ——《C时代 新零售——阿里研究院新零售研究报告》 新零售是什么 ——《C时代 新零售——阿里研究院新零售研究报告》 新零售知识框架 ——《C时代 新零售——阿里研究院新零售研究报告》 新零售——阿里研究院新零售研究报告》 数字经济基础设施 ——《C时代 新零售——阿里研究院新零售研究报告》 AI:贯穿新零售全流程 ——《C时代 新零售——阿里研究院新零售研究报告》 AR/VR:虚实结合的消费体验 ——《C时代 新零售——阿里研究院新零售研究报告》 传感器和IoT:提升门店消费体验 ——《C时代 新零售——阿里研究院新零售研究报告》 用户需求:线下门店业绩如何提升? 全球实体零售发展遭遇天花板 全球实体零售发展遭遇天花板 品牌间存量竞争 ——《C时代 新零售——阿里研究院新零售研究报告》 线上销售的广告位:直通车/钻展 线下门店的广告位:黄金位置 用好你的广告位:线上设计 用好你的广告位:线下陈列 缺货 凌乱 销量下降 用好你的广告位:线下陈列 有气势! 整齐! 销量上涨! 品牌线下PK 如何脱颖而出? 品牌商线下渠道销售的普遍需求 长期⽬目标:货架数字化与业务智能化 ������������0 码力 | 49 页 | 12.50 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台Lab (AtLab) 色情 0.01 性感 0.98 正常 0.01 特征 id1 戴眼镜 性别:男 年龄:33 场景:户外/景点/雪山 审查: 非色情 非暴力 很健康 颜值: ?? “C罗正在带球突破,后有球员追堵” 场景一 00:00:00-00:01:05 描述:事件1-XXXX 事件2-XXXX 人物出现:id1, id2 场景二 … 用户行 为 用户数 Evaluation Log Server Graph Abstraction Data Flow API Manager Pipeline AVA 弹性深度学习平 台 L1 L2 L3 L4 L5 原子API 基础模型 感知层1 API 感知层2 API Vision 综合API 业务逻辑API Argus机器视觉系统 可自定义开发 Argus现有系统提供 Time to be0 码力 | 21 页 | 1.71 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquescompressed sizes of our regular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the usual models, the figure also shows compressed Figure 5-7 (b) shows the plot. Note that both the x and y axes are in log-scale. Finally, figure 5-7 (c) compares the reconstruction errors between quantization and clustering on the same x that we used. in figure 5-6 and also reinforced by how clustering does a better job in figure 5-7 (a). (a) (b) (c) Figure 5-7: (a) Distribution of centroids (and hence precision) in the case of clustering. The centroids0 码力 | 34 页 | 3.18 MB | 1 年前3
亚马逊AWSAI Services Overview对话引擎 Rekognition 图像分析 深度学习框架 MXNet, TensorFlow, Theano, Caffe, Torch 为客户模型定制的 深度学习框架 人工智能 的托管的 API服务 Amazon AI: 新的深度学习服务 Polly Lex Rekognition 深度学习框架 MXNet, TensorFlow, Theano, Caffe, Torch 控制力 • 简单 • 混合了声明式(declarative)和命令式()代码的特点 为什么选择 MXNet ? MXNet: 可扩展的深度学习框架 MXNet 框架的特点 命令式 NDArray API 声明式 Symbolic Executor MXNet: 博采众家之长 3D Image Construction https://github.com/piiswrong/deep3d BlindTool by Joseph Paul Cohen, demo on Nexus 4 Fit the core library with all dependencies into a single C++ source file Easy to compile on … Amalgamation Runs in browser with Javascript0 码力 | 56 页 | 4.97 MB | 1 年前3
共 85 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9













