积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)

语言

全部中文(简体)(14)英语(12)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.067 秒,为您找到相关结果约 26 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    cuBLAS 12.1.3.1 ‣ NVIDIA cuDNN 8.9.3 ‣ NVIDIA NCCL 2.18.3 ‣ NVIDIA RAPIDS™ 23.06 ‣ Apex ‣ rdma-core 39.0 ‣ NVIDIA HPC-X 2.15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute For more information about AMP, see the Training With Mixed Precision Guide. Tensor Core Examples The tensor core examples provided in GitHub and NGC focus on achieving the best performance and convergence paper. This model script is available on GitHub. ‣ TransformerXL model: This transformer-based language model has a segment-level recurrence and a novel relative positional encoding. The enhancements
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because create_model(): # Initialize the core model core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Create the full full model with input, preprocessing, core and softmax layers. model = tf.keras.Sequential([ layers.Input([IMG_SIZE, IMG_SIZE, 3], dtype = tf.uint8), layers.Lambda(lambda x: tf.cast(x, tf.float32))
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded to Qwen1.5. Both language models and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user"
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient Learning models have beaten previous baselines significantly in many tasks in computer vision, natural language understanding, speech, and so on. Their rise can be attributed to a combination of things: Faster effect in the world of Natural Language Processing (NLP) (see Figure 1-2), where the Transformer architecture significantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE)
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    dropout_rate=DROPOUT_RATE): # Initalize the core model core_args = dict(input_shape=(IMG_SIZE, IMG_SIZE, 3), include_top=False) core = apps.resnet50.ResNet50(**core_args) core.trainable = False # Setup the top Lambda(lambda x: tf.cast(x, tf.float32)), layers.Lambda(lambda x: apps.resnet.preprocess_input(x)), core, layers.Flatten(), layers.Dropout(dropout_rate), layers.Dense(NUM_CLASSES, activation='softmax') optimal neural architectures for image classification and language modeling. Their generated models exhibited strong performance on the image and language benchmark datasets. Moreover, their NAS model could
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    frame/sec with 640x480 resolution 处处可部署 Beyond BlindTool by Joseph Paul Cohen, demo on Nexus 4 Fit the core library with all dependencies into a single C++ source file Easy to compile on Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ............................................................................................ 18 Core Modules ......................................................................................... intelligence(AI), audio & video recognition and image recognition. Artificial neural network is the core of deep learning methodologies. Deep learning is supported by various libraries such as Theano, TensorFlow Architecture of Keras Keras API can be divided into three main categories:  Model  Layer  Core Modules In Keras, every ANN is represented by Keras Models. In turn, every Keras Model is composition
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    the hashing trick. It helps to reduce the vocabulary with little or no performance trade-off. The core idea of the hashing trick is as follows: 1. Choose the desired vocabulary size N, and the number equivalent). 16 Kaliamoorthi, P., Siddhant, A., Li, E., & Johnson, M. (2021). Distilling Large Language Models into Tiny and Effective Students using pQRNN. arXiv preprint arXiv:2101.08890. 15 Chung Fevry, T., Tsai, H., Johnson, M., & Ruder, S. (2020). Rethinking embedding coupling in pre-trained language models. arXiv preprint arXiv:2010.12821. A common solution for visual domains is to use a model
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    intrigue and curiosity to our system. The symbol allows us to speak through a more graphic language — without resorting to cliché fire or data metaphors. 2 Brand Guidelines PyTorch Symbol Pantone 171 C Secondary Colors When designing content for the overall PyTorch brand, leverage these core palettes. These colors work successfully for print and digital communications. When using
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    MF (Intel 80186) 1990 10 K (光学字符识别) 10 MB 10 MF (Intel 80486) 2000 10 M (网页) 100 MB 1 GF (Intel Core) 2010 10 G (广告) 1 GB 1 TF (Nvidia C2050) 2020 1 T (社交网络) 100 GB 1 PF (Nvidia DGX‐2) 很明显,随机存取存储 词或字符。假设长度为T的文本序列中的词元依次为x1, x2, . . . , xT 。于是,xt(1 ≤ t ≤ T)可以被认为是文 本序列在时间步t处的观测或标签。在给定这样的文本序列时,语言模型(language model)的目标是估计序 列的联合概率 P(x1, x2, . . . , xT ). (8.3.1) 例如,只需要一次抽取一个词元xt ∼ P(xt | xt−1, . . . , 们看一下如何使用循环神经网络来构建语言模型。设小批量大小为1,批量中的文本序列为“machine”。为 了简化后续部分的训练,我们考虑使用 字符级语言模型(character‐level language model),将文本词元化 为字符而不是单词。图8.4.2演示了如何通过基于字符级语言建模的循环神经网络,使用当前的和先前的字符 预测下一个字符。 图8.4.2: 基于循环神经网络的字
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterTechniquesAI模型千问qwen中文文档IntroductionAutomation亚马亚马逊AWSAIServicesOverviewkerastutorialArchitecturesBrandGuidelines动手深度学习v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩